Тип Д17 C6 № 505868

Классификатор алгебры: Уравнения с параметром
Сложные задачи с параметром. Уравнения с параметром
i
Найдите все значения a, при каждом из которых уравнение
имеет два действительных корня, сумма которых больше a.
Решение. Преобразуем уравнение
Для выполнения утверждения задачи требуется
и
Ответ
Критерии проверки:
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Обоснованно получен правильный ответ. | 4 |
| С помощью верного рассуждения получено множество значений a, отличающееся от искомого конечным числом точек. | 3 |
| С помощью верного рассуждения получены все граничные точки искомого множества значений a. | 2 |
| Верно найдена хотя бы одна граничная точка искомого множества значений a ИЛИ установлено, что исходное уравнение при всех значениях a имеет единственное решение . | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
505868
Классификатор алгебры: Уравнения с параметром
PDF-версии: