Тип 13 № 500917 

Классификатор алгебры: Основное тригонометрическое тождество и его следствия, Тригонометрические уравнения, Тригонометрические уравнения, сводимые к целым на синус или косинус
Методы алгебры: Формулы приведения
Уравнения. Тригонометрические уравнения, сводимые к квадратным
i
а) Решите уравнение
б) Найдите корни этого уравнения, принадлежащие промежутку
Решение. а) Преобразуем уравнение:
Значит, либо откуда
либо
откуда
б) Отберем с помощью единичной окружности корни уравнения, принадлежащие заданному промежутку. Получим числа:
Ответ: а) б)
Критерии проверки:
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Обоснованно получены верные ответы в обоих пунктах. | 2 |
| Обоснованно получен верный ответ в пункте а), ИЛИ получены неверные ответы из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения пункта а) и пункта б). | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
| Максимальный балл | 2 |
Ответ: а)
б) 
500917
а)
б) 
PDF-версии: