№№ заданий Пояснения Ответы Ключ Добавить инструкцию Критерии
Источник Раздел Раздел кодификатора ФИПИ/Решу ЕГЭ Справка
PDF-версия PDF-версия (вертикальная) PDF-версия (крупный шрифт) PDF-версия (с большим полем) Версия для копирования в MS Word
Окружности и четырёхугольники
1.

Окруж­ность с цен­тром O про­хо­дит через вер­ши­ны B и C боль­шей бо­ко­вой сто­ро­ны пря­мо­уголь­ной тра­пе­ции ABCD и ка­са­ет­ся бо­ко­вой сто­ро­ны AD в точке T. Точка O лежит внут­ри тра­пе­ции ABCD.

а) До­ка­жи­те, что угол BOC вдвое боль­ше угла BTC.

б) Най­ди­те рас­сто­я­ние от точки T до пря­мой BC, если ос­но­ва­ния тра­пе­ции AB и CD равны 4 и 9 со­от­вет­ствен­но.

2.

Дана равнобедренная трапеция KLMN с основаниями KN и LM. Окружность с центром O, построенная на боковой стороне KL как на диаметре, касается боковой стороны MN и второй раз пересекает большее основание KN в точке H, точка Q — середина MN.

а) Докажите, что четырёхугольник NQOH — параллелограмм.

б) Найдите KN, если ∠LKN = 75° и LM = 1.

3.

Дана равнобедренная трапеция KLMN с основаниями KN и LM. Окружность с центром O, построенная на боковой стороне KL как на диаметре, касается боковой стороны MN и второй раз пересекает большее основание KN в точке H, точка Q — середина MN.

а) Докажите, что четырёхугольник NQOH — параллелограмм.

б) Найдите KN, если ∠LKN = 75° и LM = 2.

4.

Сторона CD прямоугольника ABCD касается некоторой окружности в точке M. Продолжение стороны AD пересекает окружность в точках P и Q, причём точка P лежит между точками D и Q. Прямая BC касается окружности, а точка Q лежит на прямой BM.

а) Докажите, что ∠DMP = ∠CBM.

б) Известно, что CM = 17 и CD = 32. Найдите сторону AD.

5.

Отрезок, соединяющий середины M и N оснований BC и AD соответственно трапеции ABCD, разбивает её на две трапеции, в каждую из которых можно вписать окружность.

а) Докажите, что трапеция ABCD равнобедренная.

б) Известно, что радиус этих окружностей равен 3, а меньшее основание BC исходной трапеции равно 8. Найдите радиус окружности, касающейся боковой стороны AB, основания AN трапеции ABMN и вписанной в неё окружности.

6.

Бис­сек­три­са угла ADC па­рал­ле­ло­грам­ма ABCD пе­ре­се­ка­ет пря­мую AB в точке E. В тре­уголь­ник ADE впи­са­на окруж­ность, ка­са­ю­ща­я­ся сто­ро­ны AE в точке K и сто­ро­ны AD в точке T.

а) До­ка­жи­те, что пря­мые KT и DE па­рал­лель­ны.

б) Най­ди­те угол BAD, если из­вест­но, что AD = 6 и KT = 3.

7.

Биссектриса угла ADC параллелограмма ABCD пересекает прямую AB в точке E. В треугольник ADE вписана окружность, касающаяся стороны AE в точке K и стороны AD в точке T.

а) Докажите, что прямые KT и DE параллельны.

б) Найдите угол BAD, если известно, что AD = 8 и KT = 4.

8.

Стороны KN и LM трапеции KLMN параллельны, прямые LM и MN — касательные к окружности, описанной около треугольника KLN.

а) Докажите, что треугольники LMN и KLN подобны.

б) Найдите площадь треугольника KLN, если известно, что KN = 3, а ∠LMN = 120°.

9.

Точка O — центр окружности, описанной около остроугольного треугольника ABC, I — центр вписанной в него окружности, H — точка пересечения высот. Известно, что

а) Докажите, что точка I лежит на окружности, описанной около треугольника BOC.

б) Найдите угол OIH, если

10.

Одна окружность вписана в прямоугольную трапецию, а вторая касается большей боковой стороны и продолжений оснований.

а) Докажите, что расстояние между центрами окружностей равно большей боковой стороне трапеции.

б) Найдите расстояние от вершины одного из прямых углов трапеции до центра второй окружности, если точка касания первой окружности с большей боковой стороной трапеции делит её на отрезки, равные 2 и 50.

11.

К окружности, вписанной в квадрат ABCD, проведена касательная, пересекающая стороны AB и AD в точках M и N соответственно.

а) Докажите, что периметр треугольника AMN равен стороне квадрата.

б) Прямая MN пересекает прямую CD в точке P. В каком отношении делит сторону BC прямая, проходящая через точку P и центр окружности, если AM : MB = 1 : 3?

12.

В прямоугольной трапеции ABCD с прямым углом при вершине A расположены две окружности. Одна из них касается боковых сторон и большего основания AD, вторая — боковых сторон, меньшего основания BC и первой окружности.

а) Прямая, проходящая через центры окружностей, пересекает основанеи AD в точке P. Докажите, что

б) Найдите площадь трапеции, если радиусы окружностей равны 3 и 1.

13.

Диагонали AC и BD четырёхугольника ABCD, вписанного в окружность, пересекается в точке P, причём BC = CD.

а) Докажите, что

б) Найдите площадь треугольника COD, где O — центр окружности, вписанной в треугольник ABD, если дополнительно известно, что BD — диаметр описанной около четырёхугольника ABCD окружности, AB = 6, а

14.

Квадрат ABCD вписан в окружность. Хорда CE пересекает его диагональ BD в точке K.

а) Докажите, что

б) Найдите отношение CK и KE, если

15.

Сторона CD прямоугольника ABCD касается некоторой окружности в точке M. Продолжение стороны AD пересекает окружность в точках P и Q, причём точка P лежит между точками D и Q. Прямая BC касается окружности, а точка Q лежит на прямой BM.

а) Докажите, что ∠DMP = ∠CBM.

б) Известно, что CM = 17 и CD = 25. Найдите сторону AD.

16.

Отрезок, соединяющий середины M и N оснований BC и AD соответственно трапеции ABCD, разбивает её на две трапеции, в каждую из которых можно вписать окружность.

а) Докажите, что трапеция ABCD равнобедренная.

б) Известно, что радиус этих окружностей равен 3, а меньшее основание BC исходной трапеции равно 10. Найдите радиус окружности, касающейся боковой стороны AB, основания AN трапеции ABMN и вписанной в неё окружности.

17.

Точки P, Q, W делят сто­ро­ны вы­пук­ло­го че­ты­рех­уголь­ни­ка ABCD в от­но­ше­нии AP : PB = CQ : QB = CW : WD = 3 : 4, ра­ди­ус окруж­но­сти, опи­сан­ной около тре­уголь­ни­ка PQW, равен 10, PQ = 16, QW = 12, угол PWQ — ост­рый.

а) До­ка­жи­те, что тре­уголь­ник PQW — пря­мо­уголь­ный.

б) Най­ди­те пло­щадь четырёхуголь­ни­ка ABCD.

18.

Параллелограмм и окружность расположены так, что сторона AB касается окружности, CD является хордой, а стороны DA и BC пересекают окружность в точках P и Q соответственно.

а) Докажите, что около четырехугольника ABQP можно описать окружность.

б) Найдите длину отрезка DQ, если известно, что AP = a, BC = b, BQ = c.

19.

В тра­пе­ции АBCD угол BAD пря­мой. Окруж­ность, по­стро­ен­ная на боль­шем ос­но­ва­нии АD как на диа­мет­ре, пе­ре­се­ка­ет мень­шее ос­но­ва­ние BC в точке C и M.

а) До­ка­жи­те, что угол BАM равен углу CАD.

б) Диа­го­на­ли тра­пе­ции АBCD пе­ре­се­ка­ют­ся в точке O.

Най­ди­те пло­щадь тре­уголь­ни­ка АOB, если АB = 6, а BC = 4BM.

20.

В тра­пе­цию ABCD с ос­но­ва­ни­я­ми AD и BC впи­са­на окруж­ность с цен­тром O.

а) До­ка­жи­те, что

б) Най­ди­те пло­щадь тра­пе­ции, если а ос­но­ва­ния равны 5 и 7.

21.

В прямоугольную трапецию ABCD с прямым углом при вершине A и острым углом при вершине D вписана окружность с центром O. Прямая DO пересекает сторону AB в точке M, а прямая CO пересекает сторону AD в точке K.

а) Докажите, что .

б) Найдите площадь треугольника AOM, если и .

22.

В выпуклом четырёхугольнике ABCD известны стороны и диагональ: AB = 3, BC = CD = 5, AD = 8, AC = 7.

а) Докажите, что вокруг этого четырёхугольника можно описать окружность.

б) Найдите BD.

23.

Четырёхугольник ABCD вписан в окружность, причем сторона CD — диаметр этой окружности. Продолжение перпендикуляра AH к диагонали BD пересекает сторону CD в точке Е, а окружность — в точке F, причем H — середина AE.

а) Докажите, что четырёхугольник BCFE — параллелограмм.

б) Найдите площадь четырёхугольника ABCD, если известно, что AB = 3 и

24.

Четырёхугольник ABCD вписан в окружность. Диаметр CC1 перпендикулярен стороне AD и пересекает её в точке M, а диаметр DD1 перпендикулярен стороне AB и пересекает её в точке N.

а) Пусть AA1 также диаметр окружности. Докажите, что .

б) Найдите углы четырехугольника ABCD, если CDB вдвое меньше угла ADB.

25.

Окруж­ность с цен­тром О1 ка­са­ет­ся ос­но­ва­ний ВС и AD и бо­ко­вой сто­ро­ны АВ тра­пе­ции ABCD. Окруж­ность с цен­тром O2 ка­са­ет­ся сто­рон ВС, CD и AD. Из­вест­но, что АВ = 10, ВС = 9, CD = 30, AD = 39.

а) До­ка­жи­те, что пря­мая О1О2 па­рал­лель­на ос­но­ва­ни­ям тра­пе­ции АВСD.

б) Най­ди­те О1О2.

26.

Четырёхугольник ABCD вписан в окружность радиуса R = 10. Известно, что AB = BC = CD = 6.

а) Докажите,что прямые BC и AD параллельны.

б) Найдите AD.

27.

Окружность проходит через вершины A, B и D параллелограмма ABCD и пересекает BC и CD в точках E и K соответственно.

а) Докажите, что отрезки AE и AK равны.

б) Найдите AD, если CE = 48, DK = 20,

28.

Окружность с центром в точке O высекает на всех сторонах трапеции ABCD равные хорды.

а) Докажите, что биссектрисы всех углов трапеции пересекаются в одной и той же точке.

б) Найдите высоту трапеции, если окружность пересекает боковую сторону AB в точках K и L так, что AK = 11, KL = 10, LB = 4.

29.

Окружность проходит через вершины A, B и D параллелограмма ABCD, пересекает сторону BC в точках B и E и пересекает сторону CD в точках K и D.

а) Докажите, что AE = AK.

б) Найдите AD, если CE =10 , DK = 9 и

30.

Окружность проходит через вершины и параллелограмма и пересекает продолжение стороны в точке а продолжение стороны в точке

а) Докажите, что отрезки и равны.

б) Найдите отношение к если

31.

Дана трапеция KLMN с основаниями KN и LM. Около треугольника KLN описана окружность, прямые LM и MN — касательные к этой окружности.

а) Докажите, что треугольники LMN и KLN подобны.

б) Найдите площадь треугольника KLN, если известно, что KN = 3, а LMN = 120° .

32.

Дана трапеция ABCD с основаниями BC и AD. Точки M и N являются серединами сторон AB и CD соответственно. Окружность, проходящая через точки B и С, пересекает отрезки BM и CN в точках P и Q (отличных от концов отрезков).

а) Докажите, что точки M, N, P и Q лежат на одной окружности.

б) Найдите длину отрезка QN, если BC = 4,5, AD = 21,5, AB = 26, CD = 25, а угол CPD — прямой.

33.

Дана трапеция ABCD с основаниями AD и BC. Точки M и N — середины сторон AB и CD соответственно. Окружность проходит через точки B и C и пересекает отрезки BM и CN в точках P и Q, отличных от концов отрезка, соответственно.

а) Докажите, что точки M, N, P и Q лежат на одной окружности.

б) Найдите PM, если отрезки AQ и BQ перпендикулярны, AB = 15, BC = 1, CD = 17, AD = 9 .

34.

Около описана окружность. Прямая BO, где O — центр вписанной окружности, вторично пересекает описанную окружность в точке P.

а) Докажите, что

б) Найдите расстояние от точки P до прямой AC, если а радиус описанной окружности равен 18.

35.

Около остроугольного треугольника ABC с различными сторонами описали окружность с диаметром BN. Высота BH пересекает эту окружность в точке K.

а) Докажите, что

б) Найдите KN, если а радиус окружности равен 12.

36.

Точка O — центр вписанной в треугольник ABC окружности. Прямая OB вторично пересекает описанную около этого треугольника окружность в точке P.

а) Докажите, что

б) Найдите площадь треугольника APC, если радиус описанной около треугольника ABC окружности равен 4, а

37.

В остроугольном треугольнике ABC, Высоты BN и CM треугольника ABC пересекаются в точке H. Точка O — центр окружности, описанной около

а) Докажите, что

б) Найдите площадь если

38.

Окружность, вписанная в ромб , касается сторон и в точках и соответственно. Прямые и пересекаются в точке .

а) Докажите, что

б) Найдите угол если и