№№ заданий Пояснения Ответы Ключ Добавить инструкцию Критерии
Источник Классификатор базовой части Классификатор планиметрии Классификатор стереометрии Методы алгебры Методы геометрии Раздел Раздел кодификатора ФИПИ/Решу ЕГЭ Справка
PDF-версия PDF-версия (вертикальная) PDF-версия (крупный шрифт) PDF-версия (с большим полем) Версия для копирования в MS Word
Окружности и системы окружностей
1.

Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй — в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.

а) Докажите, что прямые AD и BC параллельны.

б) Найдите площадь треугольника AKB, если известно, что радиусы окружностей равны 4 и 1.

2.

Две окружности касаются внутренним образом. Третья окружность касается первых двух и их линии центров.

а) Докажите, что периметр треугольника с вершинами в центрах трёх окружностей равен диаметру наибольшей из этих окружностей.

б) Найдите радиус третьей окружности, если известно, что радиусы первых двух равны 4 и 1.

3.

Хорды AD, BE и CF окружности делят друг друга на три равные части.

а) Докажите, что эти хорды равны.

б) Найдите площадь шестиугольника ABCDEF, если точки A, B, C, D, E, F последовательно расположены на окружности, а радиус окружности равен 2 корень из { 21}.

4.

Две окружности касаются внутренним образом в точке A, причём меньшая проходит через центр большей. Хорда BC большей окружности касается меньшей в точке P. Хорды AB и AC пересекают меньшую окружность в точках K и M соответственно.

а) Докажите, что прямые KM и BC параллельны.

б) пусть L — точка пересечения отрезков KM и AP. Найдите AL, если радиус большей окружности равен 10, а BC = 16.

5.

Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй — в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.

а) Докажите, что прямые AD и BC параллельны.

б) Найдите площадь треугольника AKB, если известно, что радиусы окружностей равны 4 и 1.

6.

Две окружности пересекаются в точках P и Q. Прямая, проходящая через точку P, второй раз пересекает первую окружность в точке A, а вторую — в точке D. Прямая, проходящая через точку Q параллельно AD, второй раз пересекает первую окружность в точке B, а вторую — в точке C.

а) Докажите, что четырёхугольник ABCD — параллелограмм.

б) Найдите отношение CP : PB, если радиус первой окружности втрое больше радиуса второй.

7.

К двум непересекающимся окружностям равных радиусов проведены две параллельные общие касательные. Окружности касаются одной из этих прямых в точках A и B Через точку C, лежащую на отрезке AB, проведены касательные к этим окружностям, пересекающие вторую прямую в точках D и E, причём отрезки CA и CD касаются одной окружности, а отрезки CB и CE — другой.

а) Докажите, что периметр треугольника CDE вдвое больше расстояния между центрами окружностей.

б) Найдите DE, если радиусы окружностей равны 5, расстояние между их центрами равно 18, а AC = 8.

8.

Окружность с центром O вписана в угол, равный 60°. Окружность большего радиуса с центром O1 также вписана в этот угол и проходит через точку O.

а) Докажите, что радиус второй окружности вдвое больше радиуса первой.

б) Найдите длину общей хорды этих окружностей, если известно, что радиус первой окружности равен 2 корень из { 3}.

9.

Две окружности с центрами O1 и O2 пересекаются в точках A и B, причём точки O1 и O2 лежат по разные стороны от прямой AB. Продолжения диаметра CA первой окружности и хорды CB этой окружности пересекают вторую окружности в точках D и E соответственно.

а) Докажите, что треугольники CBD и O1AO2 подобны.

б) Найдите AD, если \angle DAE=\angle BAC, радиус второй окружности втрое больше радиуса первой и AB = 3.

10.

Две окружности касаются внутренним образом в точке A, причём меньшая окружность проходит через центр O большей. Диаметр BC большей окружности вторично пересекает меньшую окружность в точке M, отличной от A. Лучи AO и AM вторично пересекают большую окружность в точках P и Q соответственно. Точка C лежит на дуге AQ большей окружности, не содержащей точку P.

а) Докажите, что прямые PQ и BC параллельны.

б) Известно, что  синус \angle AOC= дробь, числитель — корень из { 15, знаменатель — } 4. Прямые PC и AQ пересекаются в точке K. Найдите отношение QK:KA.

11.

Две окружности с центрами O1 и O2 и радиусами 3 и 4 пересекаются в точках A и B. Через точку A проведена прямая MK пересекающая обе окружности в точках M и K, причем точка A находится между ними.

а) Докажите, что треугольники BMK и O1AO2 подобны.

б) Найдите расстояние от точки B до прямой MK, если O1O2 = 5, MK = 7.

12.

Две окружности касаются внешним образом в точке C. Прямая касается меньшей окружности в точке A, а большей — в точке B, отличной от A. Прямая AC вторично пересекает большую окружность в точке D, прямая BC вторично пересекает меньшую окружность в точке E.

а) Докажите, что прямая AE параллельна прямой BD.

б) Пусть L — отличная от D точка пересечения отрезка DE с большей окружностью. Найдите EL, если радиусы окружностей равны 2 и 5.

13.

Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй — в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.

а) Докажите, что прямые AD и BC параллельны.

б) Найдите радиус окружности, описанной около треугольника BCD, если известно, что радиус первой окружности равен 4, а радиус второй окружности равен 1.

14.

Из вершины С прямого угла прямоугольного треугольника ABC проведена высота CH.

а) Докажите, что отношение площадей кругов, построенных на отрезках AH и BH соответственно как на диаметрах равно  тангенс в степени 4 \angle ABC.

б) Пусть точка O1 — центр окружности диаметра AH, вторично пересекающей отрезок AC в точке P, а точка O2 — центр окружности с диаметром BH, вторично пересекающей отрезок BC в точке Q. Найдите площадь четырёхугольника O1PQO2, если AC=22, BC=18.

15.

К окружности с диаметром AB = 6 проведена касательная BC так, что BC=3 корень из { 2}. Прямая AC вторично пересекает окружность в точке D. Точка E диаметрально противоположна точке D. Прямые ED и BC пересекаются в точке F.

а) Докажите, что BD в степени 2 =CD умножить на BE.

б) Найдите площадь треугольника FBE.

16.

Две окружности пересекаются в точках А и K так, что их центры расположены по разные стороны от прямой, содержащей отрезок АK. Точки В и С лежат на разных окружностях. Прямая, содержащая отрезок АВ, касается одной окружности в точке А. Прямая, содержащая отрезок АС, касается другой окружности также в точке А.

а) Докажите, что углы AKC и AKB равны.

б) Найдите площадь треугольника АВС, если BK = 1, CK = 4, а тангенс угла САВ равен  дробь, числитель — 1, знаменатель — корень из { 15 }.

17.

В полуокружности с диаметром MN расположены две окружности с центрами O1 и O2, касающиеся друг друга, полуокружности и прямой MN (при этом точки касания c полуокружностью — это соответственно A и B).

а) Докажите, что прямые O1A, O2B и MN пересекаются в одной точке.

б) Радиусы окружностей равны 2 и 5. Найдите радиус полуокружности.