№№ заданий Пояснения Ответы Ключ Добавить инструкцию Критерии
Источник Методы алгебры Методы геометрии Раздел Раздел кодификатора ФИПИ/Решу ЕГЭ Справка
PDF-версия PDF-версия (вертикальная) PDF-версия (крупный шрифт) PDF-версия (с большим полем) Версия для копирования в MS Word
Сюжетные задачи: кино, театр, мотки верёвки
1.

Каждый из группы учащихся сходил в кино или в театр, при этом возможно, что кто-то из них мог сходить и в кино, и в театр. Известно, что в театре мальчиков было не более от общего числа учащихся группы, посетивших театр, а в кино мальчиков было не более от общего числа учащихся группы, посетивших кино.

 

а) Могло ли быть в группе 10 мальчиков, если дополнительно известно, что всего в группе было 20 учащихся?

б) Какое наибольшее количество мальчиков могло быть в группе, если дополнительно известно, что всего в группе было 20 учащихся?

в) Какую наименьшую долю могли составлять девочки от общего числа учащихся в группе без дополнительного условия пунктов а) и б)?

2.

Два игрока ходят по очереди. Перед началом игры у них есть поровну горошин. Ход состоит в передаче сопернику любого числа горошин. Не разрешается передавать такое количество горошин, которое до этого уже кто‐то в этой партии передавал. Ноль горошин тоже передавать нельзя. Тот, кто не может сделать очередной ход по правилам, — считается проигравшим. Начинающий или его соперник победит в этой игре, как бы ни играл партнёр?

Рассмотрите случаи:

а) у каждого по две горошины;

б) у каждого по три горошины;

в) у каждого по N горошин.

3.

Трое друзей играли в шашки. Один из них сыграл 25 игр, а другой — 17 игр. Мог ли третий участник сыграть  

а) 34;

б) 35;

в) 56 игр?

4.

Леша задумал двузначное число (от 10 до 99). Гриша пытается его отгадать, называя двузначные числа. Если Гриша правильно называет число, или же одну цифру называет правильно, а в другой ошибается не более чем на единицу, то Леша отвечает «тепло»; в остальных случаях Леша отвечает «холодно». (Например, если задумано число 65, то назвав 65, 64, 66, 55 или 75, Гриша услышит в ответ «тепло», а в остальных случаях услышит «холодно».)

а) Покажите, что нет способа, при котором Гриша гарантированно узнает число, истратив 18 попыток.

б) Придумайте способ, при котором Гриша гарантированно узнает число, истратив 24 попытки (какое бы число ни задумал Леша).

в) А за 22 попытки получится?

5.

У Лены три набора, в каждом из которых одинаковое количество ручек (больше 1). У Юли несколько (больше 1) наборов ручек, по 5 штук в каждом.

а) При каком количестве наборов у Юли, количество всех ручек у Лены нечетно, если всего у девочек 105 ручек?

б) Можно ли разложить все ручки Юли и Лены в 12 наборов по 12 ручек в каждом?

в) Можно ли разложить все ручки Юли и Лены в k наборов по k ручек в каждом (k > 3)?

6.

Группа психологов разработала тест, пройдя который, каждый человек получает оценку — число Q — показатель его умственных способностей (чем больше Q, тем больше способности). За рейтинг страны принимается среднее арифметическое значений Q всех жителей страны.

а) Группа граждан страны A эмигрировала в страну B. Мог ли при этом у обеих стран вырасти рейтинг?

б) После этого группа граждан страны B (в числе которых могут быть и бывшие эмигранты из A) эмигрировала в страну A. Возможно ли, что рейтинги обеих стран опять выросли?

в) Группа граждан страны A эмигрировала в страну B, а группа граждан B — в страну C. В результате рейтинги каждой страны оказались выше первоначальных. После этого направление миграционных потоков изменилось на противоположное – часть жителей C переехала в B, а часть жителей B – в A. Оказалось, что в результате рейтинги всех стран опять выросли (по сравнению с теми, что были после первого переезда, но до начала второго). Может ли такое быть (если да, то как, если нет, то почему)? Предполагается, что за рассматриваемое время Q граждан не изменилось, никто не умер и не родился.

7.

В школе, где учат­ся Поля, Маня и Дуня, есть длин­ный ко­ри­дор вдоль одной из стен ко­то­ро­го рас­по­ло­жен длин­ный ряд из n ячеек, за­ну­ме­ро­ван­ных на­ту­раль­ны­ми чис­ла­ми от 1 до n, за­кры­ва­ю­щих­ся на замки, в ко­то­рых школь­ни­ки могут хра­нить свои лич­ные вещи. Од­на­ж­ды, придя в школу в вы­ход­ной день, Поля об­на­ру­жи­ла все ячей­ки от­кры­ты­ми. Она стала об­хо­дить ряд ячеек сна­ча­ла до конца, за­кры­вая на замок каж­дую вто­рую ячей­ку. До­стиг­нув конца ряда, она раз­вер­ну­лась и снова стала за­кры­вать на замок каж­дую вто­рую ячей­ку из тех, ко­то­рые еще были от­кры­ты. Таким об­ра­зом Поля про­дол­жа­ла об­хо­дить ряд и за­кры­вать на замок ячей­ки до тех пор, пока оста­лась не­за­кры­той одна ячей­ка.

Обо­зна­чим номер по­след­ней от­кры­той ячей­ки. На­при­мер, если ко­ли­че­ство ячеек то как по­ка­за­но на ри­сун­ке

 

123456789101112131415
123456789101112131415
13579111315
371115
311

 

а) Най­ди­те

До­ка­жи­те, что:

б) не су­ще­ству­ет на­ту­раль­но­го числа та­ко­го что

в) су­ще­ству­ет бес­ко­неч­ное мно­же­ство на­ту­раль­ных чисел таких что

8.

Дайте обоснованные ответы на следующие вопросы.

а) В мешке находятся 1 желтый, 1 зеленый и 2 красных шара. Из мешка случайным образом вынимают 2 шара разного цвета и заменяют одним шаром третьего цвета. Этот процесс продолжают до тех пор, пока все оставшиеся шары в мешке не окажутся одного цвета (возможно, что при этом в мешке останется один шар) Какого цвета шары (или шар) могут остаться в мешке?

б) В мешке 3 желтых, 4 зеленых и 5 красных шаров. Какого цвета шары (или шар) могут остаться в мешке в конце после применения описанной в предыдущем пункте процедуры?

в) В мешке находятся 3 желтых, 4 зеленых и 5 красных шаров. Из мешка случайным образом вынимают 2 шара разного цвета и заменяют двумя шарами третьего цвета. Можно ли, применяя эту процедуру многократно, добиться того, чтобы в мешке оказались шары одного цвета? Если можно, то какого цвета эти шары?

9.

У Кости была кучка из 100 камешков. Каждым ходом он делил какую-то из кучек на две меньших, пока у него не оказалось 100 кучек по одному камешку.

а) возможно ли, что в какой-то момент в каких-то 30 кучках было ровно 60 камешков;

б) возможно ли, что в какой-то момент в каких-то 20 кучках было в сумме ровно 60 камешков;

в) мог ли Костя действовать так, чтобы ни в какой момент не нашлось 19 кучек, в которых в сумме ровно 60 камешков?

10.

Рас­смат­ри­ва­ет­ся набор гирь, каж­дая из ко­то­рых весит целое число грам­мов, а общий вес всех гирь равен 500 грам­мов. Такой набор на­зы­ва­ет­ся пра­виль­ным, если любое тело, име­ю­щее вес, вы­ра­жен­ный целым чис­лом грам­мов от 1 до 500, может быть урав­но­ве­ше­но не­ко­то­рым ко­ли­че­ством гирь на­бо­ра, и при­том един­ствен­ным об­ра­зом (тело кла­дет­ся на одну чашу весов, гири – на дру­гую; два спо­со­ба урав­но­ве­ши­ва­ния, раз­ли­ча­ю­щи­е­ся лишь за­ме­ной не­ко­то­рых гирь на дру­гие того же веса, счи­та­ют­ся оди­на­ко­вы­ми).

а) При­ве­ди­те при­мер пра­виль­но­го на­бо­ра, в ко­то­ром не все гири по од­но­му грам­му.

б) Сколь­ко су­ще­ству­ет раз­лич­ных пра­виль­ных на­бо­ров?

(Два на­бо­ра раз­лич­ны, если не­ко­то­рая гиря участ­ву­ет в этих на­бо­рах не оди­на­ко­вое число раз.)

11.

а) В классе была дана контрольная. Известно, что по крайней мере две трети задач этой контрольной оказались трудными: каждую такую задачу не решили по крайней мере две трети школьников. Известно также, что по крайней мере две трети школьников класса написали контрольную хорошо: каждый такой школьник решил по крайней мере две трети задач контрольной. Могло ли такое быть?

б) Изменится ли ответ в этой задаче, если заменить везде в ее условии две трети на три четверти?

в) Изменится ли ответ в этой задаче, если заменить везде в ее условии две трети на семь девятых?

12.

На шести елках сидят шесть сорок — по одной на каждой елке. Елки растут с интервалом в 10 м. Если какая-то сорока перелетает с одной елки на другую, то какая-нибудь, другая сорока обязательно перелетает на столько же метров, но в обратном направлении.

а) Могут ли все сороки собраться на одной елке?

б) А если сорок и елок семь?

в) А если елки стоят по кругу?

13.

Имеются каменные глыбы: 50 штук по 800 кг, 60 штук по 1000 кг и 60 штук по 1500 кг (раскалывать глыбы нельзя).

а) Можно ли увезти все эти глыбы одновременно на 60 грузовиках, грузоподъемностью 5 тонн каждый, предполагая, что в грузовик выбранные глыбы поместятся?

б) Можно ли увезти все эти глыбы одновременно на 38 грузовиках, грузоподъемностью 5 тонн каждый, предполагая, что в грузовик выбранные глыбы поместятся?

в) Какое наименьшее количество грузовиков, грузоподъемностью 5 тонн каждый, понадобится, чтобы вывезти все эти глыбы одновременно, предполагая, что в грузовик выбранные глыбы поместятся?

14.

Красный карандаш стоит 17 рублей, синий — 13 рублей. Нужно купить карандаши, имея всего 495 рублей и соблюдая дополнительное условие: число синих карандашей не должно отличаться от числа красных карандашей больше чем на пять.

а) Можно ли купить при таких условиях 32 карандаша?

б) Можно ли купить при таких условиях 35 карандашей?

в) Какое наибольшее число карандашей можно купить при таких условиях?

15.

Крас­ный ка­ран­даш стоит 18 руб­лей, синий — 14 руб­лей. Нужно ку­пить ка­ран­да­ши, имея всего 499 руб­лей и со­блю­дая до­пол­ни­тель­ное усло­вие: число синих ка­ран­да­шей не долж­но от­ли­чать­ся от числа крас­ных ка­ран­да­шей боль­ше чем на шесть.

а) Можно ли ку­пить 30 ка­ран­да­шей?

б) Можно ли ку­пить 33 ка­ран­да­ша?

в) Какое наи­боль­шее число ка­ран­да­шей можно ку­пить?

16.

В игре «Дротики» есть 20 наружных секторов, пронумерованных от 1 до 20 и два центральных сектора. При попадании в наружный сектор игрок получает количество очков, совпадающее с номером сектора, а за попадание в центральные сектора он получает 25 или 50 очков соответственно. В каждом из наружных секторов есть области удвоения и утроения, которые, соответственно, удваивают или утраивают номинал сектора. Так, например, попадание в сектор 10 (не в зоны удвоения и утроения) дает 10 очков, в зону удвоения сектора ― 20 очков, в зону утроения ― 30 очков.

а) Может ли игрок тремя бросками набрать ровно 167 очков?

б) Может ли игрок шестью бросками набрать ровно 356 очков?

в) С помощью какого наименьшего количества бросков, игрок может набрать ровно 1001 очко?

17.

В роте два взвода, в первом взводе солдат меньше, чем во втором, но больше чем 46, а вместе солдат меньше чем 111. Командир знает, что роту можно построить по несколько человек в ряд так, что в каждом ряду будет одинаковое число солдат, большее 8, и при этом ни в каком ряду не будет солдат из двух разных взводов.

а) Сколько солдат в первом взводе и сколько во втором? Приведите хотя бы один пример.

б) Можно ли построить роту указанным способом по 13 солдат в одном ряду?

в) Сколько в роте может быть солдат?

18.

Семь экспертов оценивают кинофильм. Каждый из них выставляет оценку — целое число баллов от 0 до 10 включительно. Известно, что все эксперты выставили различные оценки. По старой системе оценивания рейтинг кинофильма — это среднее арифметическое всех оценок экспертов. По новой системе оценивания рейтинг кинофильма вычисляется следующим образом: отбрасываются наименьшая и наибольшая оценки и подсчитывается среднее арифметическое пяти оставшихся оценок.

а) Может ли разность рейтингов, вычисленных по старой и новой системам оценивания, равняться

б) Может ли эта разность рейтингов, вычисленных по старой и новой системам оценивания, равняться

в) Найдите наибольшее возможное значение разности рейтингов, вычисленных по старой и новой системам оценивания.

19.

На доске написали несколько не обязательно различных двузначных натуральных чисел без нулей в десятичной записи. Сумма этих чисел оказалась равной 363. Затем в каждом числе поменяли местами первую и вторую цифры (например, число 17 заменили на число 71).

а) Приведите пример исходных чисел, для которых сумма получившихся чисел ровно в 4 раза больше, чем сумма исходных чисел.

б) Могла ли сумма получившихся чисел быть ровно в 2 раза больше, чем сумма исходных чисел?

в) Найдите наибольшее возможное значение суммы получившихся чисел.

20.

Участники одной школы писали тест. Результатом каждого ученика является целое неотрицательное число баллов. Ученик считается сдавшим тест, если он набрал не менее 73 баллов. Из-за того, что задания оказались слишком трудными, было принято решение всем участникам теста добавить по 5 баллов, благодаря чему количество сдавших тест увеличилось.

а) Могло ли оказаться так, что после этого средний балл участников, не сдавших тест, понизился?

б) Могло ли оказаться так, что после этого средний балл участников, сдавших тест, понизился, и средний балл участников, не сдавших тест, тоже понизился?

в) Известно, что первоначально средний балл участников теста составил 80, средний балл участников, сдавших тест, составил 90, а средний балл участников, не сдавших тест, составил 65. После добавления баллов средний балл участников, сдавших тест, стал равен 93, а не сдавших — 69. При каком наименьшем числе участников теста возможна такая ситуация?

21.

На доске написали несколько не обязательно различных двузначных натуральных чисел без нулей в десятичной записи. Сумма этих чисел оказалась равной 2970. В каждом числе поменяли местами первую и вторую цифры (например, число 16 заменили на число 61).

а) Приведите пример исходных чисел, для которых сумма получившихся чисел ровно в 3 раза меньше, чем сумма исходных чисел.

б) Могла ли сумма получившихся чисел быть ровно в 5 раз меньше, чем сумма исходных чисел?

в) Найдите наименьшее возможное значение суммы получившихся чисел.

22.

В роте два взвода, в первом взводе солдат меньше, чем во втором, но больше чем 50, а вместе солдат меньше чем 120. Командир знает, что роту можно построить по несколько человек в ряд так, что в каждом ряду будет одинаковое число солдат, большее 7, и при этом ни в каком ряду не будет солдат из двух разных взводов.

а) Сколько солдат в первом взводе и сколько во втором? Приведите хотя бы один пример.

б) Можно ли построить роту указанным способом по 11 солдат в одном ряду?

в) Сколько в роте может быть солдат?

23.

В одном из заданий на конкурсе бухгалтеров требуется выдать премии сотрудникам некоторого отдела на общую сумму 600 000 рублей (размер премии каждого сотрудника — целое число, кратное 1000). Бухгалтеру дают распределение премий, и он должен их выдать без сдачи и размена, имея 100 купюр по 1000 рублей и 100 купюр по 5000 рублей.

а) Удастся ли выполнить задание, если в отделе 40 сотрудников и все должны получить поровну?

б) Удастся ли выполнить задание, если ведущему специалисту надо выдать 40 000 рублей, а остальные поделить поровну на 70 сотрудников?

в) При каком наибольшем количестве сотрудников в отделе задание удастся выполнить при любом распределении размеров премий?

24.

Имеются каменные глыбы: 50 штук по 800 кг, 60 штук по 1 000 кг и 60 штук по 1 500 кг (раскалывать глыбы нельзя).

а) Можно ли увезти все эти глыбы одновременно на 60 грузовиках, грузоподъёмностью 5 тонн каждый, предполагая, что в грузовик выбранные глыбы поместятся?

б) Можно ли увезти все эти глыбы одновременно на 38 грузовиках, грузоподъёмностью 5 тонн каждый, предполагая, что в грузовик выбранные глыбы поместятся?

в) Какое наименьшее количество грузовиков, грузоподъёмностью 5 тонн каждый, понадобится, чтобы вывезти все эти глыбы одновременно, предполагая, что в грузовик выбранные глыбы поместятся?

25.

За новогодним столом дети ели бутерброды и конфеты, причем каждый что-то ел, и может быть так, что кто-то ел и то и другое. Известно, что мальчиков, евших бутерброды, было не более чем от общего числа детей, евших бутерброды, а мальчиков, евших конфеты, было не более от общего числа детей, евших конфеты.

а) Могло ли за столом быть 13 мальчиков, если дополнительно известно, что всего за столом было 25 детей?

б) Какое наибольшее количество мальчиков могло быть за столом, если дополнительно известно, что всего за столом было 25 детей?

в) Какую наименьшую долю могли составлять девочки от общего числа детей без дополнительного условия пунктов а и б?

26.

Несколько экспертов оценивают несколько кинофильмов. Каждый из них выставляет оценку каждому кинофильму — целое число баллов от 1 до 10 включительно. Известно, что каждому кинофильму все эксперты выставили различные оценки. Рейтинг кинофильма — это среднее геометрическое оценок всех экспертов. Среднее геометрическое чисел равно Оказалось, что рейтинги всех кинофильмов — различные целые числа.

а) Могло ли быть 2 эксперта и 5 кинофильмов?

б) Могло ли быть 3 эксперта и 4 кинофильма?

в) При каком наибольшем количестве экспертов описанная ситуация возможна для одного кинофильма?

27.

После того, как учитель доказал классу новую теорему, выяснилось, что большая часть класса не поняла доказательство (быть может, все — Решу ЕГЭ). На перемене один ученик вдруг понял доказательство (и только он). Также известно, что в классе учится не более 30, но не менее 20 человек.

а) Могло ли получиться так, что теперь уже меньшая часть класса не понимает доказательство?

б) Могло ли получиться так, что исходно процент учеников, понявших доказательство, выражался целым числом, а после перемены ― нецелым числом?

в) Какое наибольшее целое значение может принять процент учеников класса, так и не понявших доказательство этой теоремы?

28.

На сайте проводится опрос, кого из 134 футболистов посетители сайта считают лучшим по итогам сезона. Каждый посетитель голосует за одного футболиста. На сайте отображается рейтинг каждого футболиста — доля голосов, отданных за него, в процентах, округлённая до целого числа. Например, числа 9,3, 10,5 и 12,7 округляются до 9, 11 и 13 соответственно.

а) Всего проголосовало 17 посетителей сайта, и рейтинг первого футболиста стал равен 41. Увидев это, Вася отдал свой голос за другого футболиста. Чему теперь равен рейтинг первого футболиста?

б) Вася проголосовал за некоторого футболиста. Могла ли после этого сумма рейтингов всех футболистов уменьшиться не менее чем на 27?

в) Какое наибольшее значение может принимать сумма рейтингов всех футболистов?

29.

В группе поровну юношей и девушек. Юноши отправляли электронные письма девушкам. Каждый юноша отправил или 4 письма, или 21 письмо, причём и тех, и других юношей было не менее двух. Возможно, что какой-то юноша отправил какой-то девушке несколько писем.

а) Могло ли оказаться так, что каждая девушка получила ровно 7 писем?

б) Какое наименьшее количество девушек могло быть в группе, если известно, что все они получили писем поровну?

в) Пусть все девушки получили различное количество писем (возможно, какая-то девушка не получила писем вообще). Каково наибольшее возможное количество девушек в такой группе?

30.

В одном из заданий на конкурсе бухгалтеров требуется выдать премии сотрудникам некоторого отдела на общую сумму 800 000 рублей (размер премии каждого сотрудника — целое число, кратное 1000). Бухгалтеру дают распределение премий, и он должен их выдать без сдачи и размена, имея 250 купюр по 1000 рублей и 110 купюр по 5000 рублей.

а) Удастся ли выполнить задание, если в отделе 40 сотрудников и все должны получить поровну?

б) Удастся ли выполнить задание, если ведущему специалисту надо выдать 80 000 рублей, а остальное поделить поровну на 80 сотрудников?

в) При каком наибольшем количестве сотрудников в отделе задание удастся выполнить при любом распределении размеров премий?

31.

В не­сколь­ких оди­на­ко­вых боч­ках на­ли­то не­ко­то­рое ко­ли­че­ство лит­ров воды (не­обя­за­тель­но оди­на­ко­вое). За один раз можно пе­ре­лить любое ко­ли­че­ство воды из одной бочки в дру­гую.

а) Пусть есть че­ты­ре бочки, в ко­то­рых 29, 32, 40, 91 лит­ров. Можно ли не более чем за че­ты­ре пе­ре­ли­ва­ния урав­нять ко­ли­че­ство воды в боч­ках?

б) Путь есть семь бочек. Все­гда ли можно урав­нять ко­ли­че­ство воды во всех боч­ках не более чем за пять пе­ре­ли­ва­ний?

в) За какое наи­мень­шее ко­ли­че­ство пе­ре­ли­ва­ний можно за­ве­до­мо урав­нять ко­ли­че­ство воды в 26 боч­ках?

32.

Вася перемножил несколько различных натуральных чисел из отрезка [23; 84]. Петя увеличил каждое из Васиных чисел на 1 и перемножил все полученные числа.

а) Может ли Петин результат быть ровно вдвое больше Васиного?

б) Может ли Петин результат быть ровно в 6 раз больше Васиного?

в) В какое наибольшее целое число раз Петин результат может быть больше Васиного?

33.

На каждой из 28 костей домино написаны два целых числа, не меньших 0 и не больших 6 так, что они образуют все возможные пары по одному разу (0-0, 0-1, 0-2 и так далее до 6-6).

Все кости домино разложили на несколько кучек и для каждой кучки подсчитали сумму всех чисел на костях, находящихся в этой кучке. Оказалось, что полученные суммы образуют возрастающую арифметическую прогрессию.

а) Могло ли быть 7 кучек?

б) Могло ли быть 9 кучек?

в) Какое наибольшее количество кучек могло быть?

34.

В шах­ма­ты можно вы­иг­рать, про­иг­рать или сыг­рать вни­чью. Шах­ма­тист за­пи­сы­ва­ет ре­зуль­тат каж­дой сыг­ран­ной им пар­тии и после каж­дой пар­тии под­счи­ты­ва­ет три по­ка­за­те­ля: «по­бе­ды» — про­цент побед, округлённый до це­ло­го, «ничьи» — про­цент ни­чьих, округлённый до це­ло­го, и «по­ра­же­ния», рав­ные раз­но­сти 100 и суммы по­ка­за­те­лей «побед» и «ни­чьих». (На­при­мер, число 13,2 округ­ля­ет­ся до 13, число 14,5 округ­ля­ет­ся до 15, число 16,8 округ­ля­ет­ся до 17).

а) Может ли в какой-то мо­мент по­ка­за­тель «побед» рав­нять­ся 17, если было сыг­ра­но менее 50 пар­тий?

б) Может ли после вы­иг­ран­ной пар­тии уве­ли­чит­ся по­ка­за­тель «по­ра­же­ний»?

в) Одна из пар­тий была про­иг­ра­на. При каком наи­мень­шем ко­ли­че­стве сыг­ран­ных пар­тий по­ка­за­тель «по­ра­же­ний» может быть рав­ным 1?

35.

В роте два взво­да, в пер­вом взво­де сол­дат мень­ше, чем во вто­ром, но боль­ше, чем 46, а вме­сте сол­дат мень­ше, чем 111. Ко­ман­дир знает, что роту можно по­стро­ить по не­сколь­ко че­ло­век в ряд так, что в каж­дом ряду будет оди­на­ко­вое число сол­дат, боль­ше 8, и при этом ни в каком ряду не будет сол­дат из двух раз­ных взво­дов.

а) Сколь­ко сол­дат в пер­вом взво­де и сколь­ко во вто­ром? При­ве­ди­те хотя бы один при­мер.

б) Можно ли по­стро­ить роту ука­зан­ным спо­со­бом по 13 сол­дат в одном ряду?

в) Сколь­ко в роте может быть сол­дат?

36.

Красный карандаш стоит 17 рублей, синий — 13 рублей. Нужно купить карандаши, имея всего 495 рублей и соблюдая дополнительное условие: число синих карандашей не должно отличаться от числа красных карандашей больше чем на пять.

а) Можно ли купить при таких условиях 32 карандаша?

б) Можно ли купить при таких условиях 35 карандашей?

в) Какое наибольшее число карандашей можно купить при таких условиях?

37.

Каждый из 28 студентов писал или одну из двух контрольных работ, или написал обе контрольные работы. За каждую работу можно было получить целое число баллов от 0 до 20 включительно. По каждой из двух контрольных работ в отдельности средний балл составил 15. Затем каждый студент назвал наивысший из своих баллов (если студент писал одну работу, то он назвал балл за неё). Среднее арифметическое названных баллов равно S.

а) Приведите пример, когда S < 15.

б) Могло ли оказаться, что только два студента написали обе контрольные работы, если S = 13?

в) Какое наименьшее количество студентов могло написать обе контрольные работы, если S = 13?

38.

Каждый из 28 студентов писал или одну из двух контрольных работ, или написал обе контрольные работы. За каждую работу можно было получить целое число баллов от 0 до 20 включительно. По каждой из двух контрольных работ в отдельности средний балл составил 15. Затем каждый студент назвал наивысший из своих баллов (если студент писал одну работу, то он назвал балл за неё). Среднее арифметическое названных баллов равно S.

а) Приведите пример, когда S < 15.

б) Могло ли значение S быть равным 5?

в) Какое наименьшее значение могло принимать S, если обе контрольные работы писали 10 студентов?

39.

Маша и Наташа делают фотографии. Каждый день каждая девочка делает на одну фотографию больше, чем в предыдущий день. В конце Наташа сделала на 1001 фотографию больше, чем Маша.

а) Могло ли это произойти за 7 дней?

б) Могло ли это произойти за 8 дней?

в) Какое максимальное количество фотографий могла сделать Наташа, если Маша в последний день сделала меньше 40 фотографий?

40.

Шесть экспертов оценивали фильм. Каждый из них выставил оценку — целое число баллов от 0 до 10 включительно. Все эксперты выставил различные оценки. Старый рейтинг фильма — это среднее арифметическое всех оценок экспертов. Новый рейтинг фильма вычисляется следующим образом: отбрасываются наименьшая и наибольшая оценки, и подсчитывается среднее арифметическое четырёх оставшихся оценок.

а) Может ли разность рейтингов, вычисленных по старой и новой системам оценивания, равняться ?

б) Может ли разность рейтингов, вычисленных по старой и новой системам оценивания, равняться ?

в) Найдите наибольшее возможное значение разности старого и нового рейтингов.

41.

Восемь экспертов оценивали фильм. Каждый из них выставил оценку — целое число баллов от 0 до 12 включительно. Все эксперты выставил различные оценки. Старый рейтинг фильма — это среднее арифметическое всех оценок экспертов. Новый рейтинг фильма вычисляется следующим образом: отбрасываются наименьшая и наибольшая оценки, и подсчитывается среднее арифметическое шести оставшихся оценок.

а) Может ли разность рейтингов, вычисленных по старой и новой системам оценивания, равняться ?

б) Может ли разность рейтингов, вычисленных по старой и новой системам оценивания, равняться ?

в) Найдите наибольшее возможное значение разности старого и нового рейтингов.

42.

На доске написали несколько не обязательно различных двузначных натуральных чисел без нулей в десятичной записи. Сумма этих чисел оказалась равной 165. Затем в каждом числе поменяли местами первую и вторую цифры (например, число 17 заменили на число 71).

а) Приведите пример исходных чисел, для которых сумма получившихся чисел ровно в 4 раза больше, чем сумма исходных чисел.

б) Могла ли сумма получившихся чисел быть ровно в 5 раз больше, чем сумма исходных чисел?

в) Найдите наибольшее возможное значение суммы получившихся чисел.

43.

У Вовы есть набор из n грузиков попарно различных натуральных масс в граммах и чашечные весы, которые находятся в равновесии, если на каждой из двух их чаш лежат грузики с одинаковыми суммарными массами. Известно, что, какие бы два из них ни положили на одну чашу весов, всегда можно положить на другую чашу один или несколько из оставшихся грузиков так, что весы уравновесятся.

а) Может ли у Вовы быть ровно 6 грузиков, среди которых есть грузик массой 5 г?

б) Может ли у Вовы быть ровно 5 грузиков?

в) Известно, что среди грузиков Вовы есть грузик массой 1 г. Какую наименьшую массу может иметь самый тяжёлый грузик Вовы?

44.

Склад представляет собой прямоугольный параллелепипед с целыми сторонами, контейнеры — прямоугольные параллелепипеды с размерами 1×1×3 м. Контейнеры на складе можно класть как угодно, но параллельно границам склада.

а) Может ли оказаться, что полностью заполнить склад размером 120 кубометров нельзя?

б) Может ли оказаться, что на склад объемом 100 кубометров не удастся поместить 33 контейнера?

в) Пусть объем склада равен 800 кубометров. Какой процент объема такого склада удастся гарантировано заполнить контейнерами при любой конфигурации склада?

45.

Агата добиралась от дома до института на своем автомобиле с постоянной скоростью 100 км/ч. Обратно она ехала с постоянной скоростью, которая измерялась целым числом километров в час, причем путь до дома занял у нее больше времени, чем путь до института.

а) Могла ли ее средняя скорость за эти две поездки составить 90 км/ч?

б) Могла ли ее средняя скорость за эти две поездки оказаться равной целому числу километров в час?

в) Какое наименьшее целое число километров в час могла составлять ее средняя скорость за эти две поездки?

46.

В ящике лежат 73 овоща, масса каждого из которых выражается целым числом граммов. В ящике есть хотя бы два овоща различной массы, а средняя масса всех овощей равна 1000 г. Средняя масса овощей , масса каждого из которых меньше 1000 г, равна 988 г. Средняя масса овощей, масса каждого из которых больше 1000 г, равна 1030 г.

а) Могло ли в ящике оказаться поровну овощей массой меньше 1000 г и овощей массой больше 1000 г?

б) Могло ли в ящике оказаться ровно 11 овощей, масса каждого из которых равна 1000 г?

в) Какую наименьшую массу может иметь овощ в этом ящике?

47.

В ящике лежат 68 овощей, масса каждого из которых выражается целым числом граммов. В ящике есть хотя бы два овоща различной массы, а средняя масса всех овощей равна 1000 г. Средняя масса овощей , масса каждого из которых меньше 1000 г, равна 944 г. Средняя масса овощей, масса каждого из которых больше 1000 г, равна 1016 г.

а) Могло ли в ящике оказаться поровну овощей массой меньше 1000 г и овощей массой больше 1000 г?

б) Могло ли в ящике оказаться ровно 15 овощей, масса каждого из которых равна 1000 г?

в) Какую наименьшую массу может иметь овощ в этом ящике?

48.

В течении n дней каждый день на доску записывают натуральные числа, каждые из которых меньше 6. При этом каждый день (кроме первого) сумма чисел, записанных на доску в этот день, больше, а количество чисел меньше, чем в предыдущий день.

а) Известно, что сумма чисел, записанных в первый день, равна 8. Может ли n быть больше 7?

б) Может ли среднее арифметическое чисел, записанных в первый день, быть меньше 4, среднее арифметическое всех чисел, записанных за все дни, быть больше 4,5?

в) Известно, что . Какое наименьшее количество чисел могло быть записано за все эти дни?

49.

а) Найдите хотя бы одно такое натуральное число n, что десятичная запись числа n2 + 2n оканчивается всеми цифрами числа n, записанными в том же порядке.

б) Может ли такое число оканчиваться цифрой 3?

в) Найдите все такие четырёхзначные числа

50.

Петя играет солдатиками из двух разных наборов. В первом наборе солдатиков меньше, чем во втором, но больше чем А всего солдатиков у Пети меньше Петя знает, что может построить колонну по несколько солдатиков в ряд так, что в каждом ряду будет одинаковое число солдатиков, большее и при этом ни в каком ряду не будет солдатиков из разных наборов.

а) Сколько солдатиков может быть в первом наборе и сколько во втором? Приведите один пример.

б) Может ли Петя построить колонну указанным способом по солдатиков в ряд?

в) Сколько всего солдатиков может быть у Пети? Укажите все возможные варианты.

51.

Известно, что в кошельке лежало n монет, каждая из которых могла иметь достоинство 2, 5 или 10 рублей. Аня сделала все свои покупки, расплатившись за каждую покупку отдельно без сдачи только этими монетами, потратив при этом все монеты из кошелька.

а) Могли ли все её покупки состоять из блокнота за 56 рублей и ручки за 29 рублей, если n = 14?

б) Могли ли все её покупки состоять из чашки чая за 10 рублей, сырка за 15 рублей и пирожка за 20 рублей, если n = 19?

в) Какое наименьшее количество пятирублёвых монет могло быть в кошельке, если Аня купила только альбом за 85 рублей и n = 24?