СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
Математика профильного уровня
Сайты, меню, вход, новости


Вариант № 34913435

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 77349

В сентябре 1 кг винограда стоил 60 рублей, в октябре виноград подорожал на 25%, а в ноябре еще на 20%. Сколько рублей стоил 1 кг винограда после подорожания в ноябре?


Ответ:

2
Задание 2 № 505113

На диаграмме показан средний балл участников 10 стран в тестировании учащихся 4-го класса по математике в 2007 году (по 1000-балльной шкале). Найдите число стран, в которых средний балл ниже, чем 515.


Ответ:

3
Задание 3 № 27566

Найдите площадь треугольника, вершины которого имеют координаты (0;0), (10;7), (7;10).


Ответ:

4
Задание 4 № 320171

На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Вписанная окружность», равна 0,2. Вероятность того, что это вопрос по теме «Параллелограмм», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.


Ответ:

5
Задание 5 № 26653

Найдите корень уравнения


Ответ:

6
Задание 6 № 317338

Площадь параллелограмма ABCD равна 189. Точка E — середина стороны AD. Найдите площадь трапеции AECB.


Ответ:

7
Задание 7 № 119979

Материальная точка движется прямолинейно по закону (где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения). В какой момент времени (в секундах) ее скорость была равна 2 м/с?

 

 


Ответ:

8
Задание 8 № 27052

Объем конуса равен 16. Через середину высоты параллельно основанию конуса проведено сечение, которое является основанием меньшего конуса с той же вершиной. Найдите объем меньшего конуса.


Ответ:

9
Задание 9 № 26806

Найдите , если


Ответ:

10
Задание 10 № 317098

Рейтинг интернет-магазина вычисляется по формуле

где  — средняя оценка магазина покупателями (от 0 до 1),  — оценка магазина экспертами (от 0 до 0,7) и  — число покупателей, оценивших магазин. Найдите рейтинг интернет-магазина «Бета», если число покупателей, оставивших отзыв о магазине, равно 20, их средняя оценка равна 0,65, а оценка экспертов равна 0,37.


Ответ:

11
Задание 11 № 99612

По двум параллельным железнодорожным путям друг навстречу другу следуют скорый и пассажирский поезда, скорости которых равны соответственно 65 км/ч и 35 км/ч. Длина пассажирского поезда равна 700 метрам. Найдите длину скорого поезда, если время, за которое он прошел мимо пассажирского поезда, равно 36 секундам. Ответ дайте в метрах.


Ответ:

12
Задание 12 № 77493

Найдите точку минимума функции , принадлежащую промежутку


Ответ:

13
Задание 13 № 500000

Дано уравнение

 

а) Решите данное уравнение.

б) Укажите корни данного уравнения, принадлежащие промежутку


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 14 № 507887

В основании правильной треугольной призмы ABCA1B1C1 лежит треугольник со стороной 6. Высота призмы равна 4. Точка N — середина ребра A1C1.

а) Постройте сечение призмы плоскостью BAN.

б) Найдите периметр этого сечения.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 15 № 507894

Решите неравенство


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задание 16 № 513281

На сторонах AC и BC треугольника ABC вне треугольника построены квадраты ACDE и BFKC. Точка M — середина стороны AB.

а) Докажите, что

б) Найдите расстояние от точки M до центров квадратов, если AC = 10, BC = 32 и ∠ACB = 30°.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 17 № 520941

15-го декабря планируется взять кредит в банке на сумму 1100 тысяч рублей на 31 месяц. Условия его возврата таковы:

— 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца с 1-го по 30-й долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца;

— к 15-му числу 31-го месяца кредит должен быть полностью погашен. Какой долг будет 15-го числа 30-го месяца, если общая сумма выплат после полного погашения кредита составит 1503 тысячи рублей?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Задание 18 № 507512

Найдите все значения параметра a, при каждом из которых уравнение

имеет корни, но ни один из них не принадлежит интервалу (4; 19).


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Задание 19 № 512404

Будем называть четырёхзначное число очень счастливым, если все цифры в его десятичной записи различны, а сумма первых двух из этих цифр равна сумме последних двух из них. Например, очень счастливым является число 3140.

а) Существуют ли двадцать последовательных четырёхзначных чисел, среди которых есть три очень счастливых?

б) Может ли разность двух очень счастливых четырёхзначных чисел равняться 2016?

в) Найдите наименьшее простое число, для которого не существует кратного ему очень счастливого четырёхзначного числа.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения.