СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
Математика профильного уровня
Сайты, меню, вход, новости


Вариант № 34490007

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 503131

Поезд отправился из Санкт-Петербурга в 23 часа 50 минут и прибыл в Москву в 7 часов 50 минут следующих суток. Сколько часов поезд находился в пути?


Ответ:

2
Задание 2 № 263631

На рисунке жирными точками показан курс евро, установленный Центробанком РФ, во все рабочие дни с 22 сентября по 22 октября 2010 года. По горизонтали указываются числа месяца, по вертикали — цена евро в рублях. Для наглядности жирные точки на рисунке соединены линией. Определите по рисунку, сколько рабочих дней из данного периода курс евро был ровно 41,4 рубля.


Ответ:

3
Задание 3 № 27853

Найдите высоту трапеции , опущенную из вершины , если стороны квадратных клеток равны


Ответ:

4
Задание 4 № 320205

Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Статор» по очереди играет с командами «Ротор», «Мотор» и «Стартер». Найдите вероятность того, что «Статор» будет начинать только первую и последнюю игры.


Ответ:

5
Задание 5 № 26662

Найдите корень уравнения:

 


Ответ:

6
Задание 6 № 27916

Найдите сторону правильного шестиугольника, описанного около окружности, радиус которой равен


Ответ:

7
Задание 7 № 27492

На рисунке изображен график производной функции f(x), определенной на интервале (−8; 4). В какой точке отрезка [−7; −3] f(x) принимает наименьшее значение?


Ответ:

8
Задание 8 № 318475

В правильной четырёхугольной призме известно, что Найдите угол между диагоналями и Ответ дайте в градусах.


Ответ:

9
Задание 9 № 502014

Найдите значение выражения


Ответ:

10
Задание 10 № 27969

Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому , где — мощность излучения звезды (в ваттах), — постоянная, м — площадь поверхности звезды (в квадратных метрах), а — температура (в градусах Кельвина). Известно, что площадь поверхности некоторой звезды равна м, а мощность её излучения равна Вт. Найдите температуру этой звезды в градусах Кельвина.


Ответ:

11
Задание 11 № 323849

Два человека отправляются из одного дома на прогулку до опушки леса, находящейся в 4,4 км от дома. Один идёт со скоростью 2,5 км/ч, а другой — со скоростью 3 км/ч. Дойдя до опушки, второй с той же скоростью возвращается обратно. На каком расстоянии от дома произойдёт их встреча? Ответ дайте в километрах.


Ответ:

12
Задание 12 № 507908

Найдите наименьшее значение функции


Ответ:

13
Задание 13 № 503127

а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 14 № 514655

В основании прямой треугольной призмы ABCA1B1C1 лежит прямоугольный треугольник ABC с прямым углом C, AC = 4, BC = 16, Точка Q — середина ребра A1B1, а точка P делит ребро B1C1 в отношении 1 : 2, считая от вершины C1. Плоскость APQ пересекает ребро CC1 в точке M.

а) Докажите, что точка M является серединой ребра CC1.

б) Найдите расстояние от точки A1 до плоскости APQ.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 15 № 507764

Решите неравенство:


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задание 16 № 509161

В прямоугольном треугольнике ABC с прямым углом C известны стороны AC = 12, BC = 5. Окружность радиуса с центром O на стороне BC проходит через вершину C. Вторая окружность касается катета AC, гипотенузы треугольника, а также внешним образом касается первой окружности.

а) Докажите, что радиус второй окружности меньше, чем длины катета AC.

б) Найдите радиус второй окружности.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 17 № 520806

15-го декабря планируется взять кредит в банке на 21 месяц. Условия возврата таковы:

— 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца с 1-го по 20-й долг должен быть на 30 тысяч рублей меньше долга на 15-е число предыдущего месяца;

— к 15-му числу 21-го месяца кредит должен быть полностью погашен.

Какую сумму планируется взять в кредит, если общая сумма выплат после полного его погашения составит 1604 тысяч рублей?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Задание 18 № 514741

Найдите все значения a, при каждом из которых уравнение

имеет ровно два различных корня.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Задание 19 № 517584

На доске написано 30 различных натуральных чисел, каждое из которых либо четное, либо его десятичная запись заканчивается на цифру 7. Сумма написанных чисел равна 810.

а) Может ли быть 24 четных числа?

б) Может ли быть на доске ровно два числа, оканчивающихся на 7?

в) Какое наименьшее количество чисел с последней цифрой 7 может быть на доске?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения.