№№ заданий Пояснения Ответы Ключ Добавить инструкцию Критерии
Источник Классификатор базовой части Классификатор планиметрии Классификатор стереометрии Методы алгебры Методы геометрии Раздел Раздел кодификатора ФИПИ/Решу ЕГЭ Справка
PDF-версия PDF-версия (вертикальная) PDF-версия (крупный шрифт) PDF-версия (с большим полем) Версия для копирования в MS Word
Вариант № 27540127

1.

Среди 40000 жителей города 60% не интересуются футболом. Среди жителей, интересующихся футболом, 80% смотрели по телевизору финал Лиги чемпионов. Сколько жителей города смотрело этот матч по телевизору?

2.

На диаграмме показана средняя температура воздуха в Екатеринбурге (Свердловске) за каждый месяц 1973 года. По горизонтали указываются месяцы, по вертикали — средняя температура в градусах Цельсия. Определите по диаграмме наибольшую среднюю температуру в Екатеринбурге во второй половине 1973 года. Ответ дайте в градусах Цельсия.

 

3.

Найдите площадь четырехугольника, вершины которого имеют координаты (6; 3), (9; 4), (10; 7), (7; 6).

4.

По отзывам покупателей Иван Иванович оценил надёжность двух интернет-магазинов. Вероятность того, что нужный товар доставят из магазина А, равна 0,8. Вероятность того, что этот товар доставят из магазина Б, равна 0,9. Иван Иванович заказал товар сразу в обоих магазинах. Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар.

5.

Найдите корень уравнения

6.

Прямая, проведенная параллельно боковой стороне трапеции через конец меньшего основания, равного 4, отсекает треугольник, периметр которого равен 15. Найдите периметр трапеции.

7.

На рисунке изображен график производной функции f(x), определенной на интервале (−18; 6). Найдите количество точек минимума функции f(x) на отрезке [−13;1].

8.

В прямоугольном параллелепипеде ребро , ребро , ребро Точка  — середина ребра Найдите площадь сечения, проходящего через точки и

9.

Найдите , если

10.

Коэффициент полезного действия (КПД) кормозапарника равен отношению количества теплоты, затраченного на нагревание воды массой (в килограммах) от температуры до температуры (в градусах Цельсия) к количеству теплоты, полученному от сжигания дров массы кг. Он определяется формулой , где Дж/(кгК) – теплоёмкость воды, Дж/кг – удельная теплота сгорания дров. Определите наименьшую массу дров, которую понадобится сжечь в кормозапарнике, чтобы нагреть кг воды от до кипения, если известно, что КПД кормозапарника не больше Ответ выразите в килограммах.

11.

Смешали некоторое количество 15–процентного раствора некоторого вещества с таким же количеством 19–процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?

12.

Найдите наименьшее значение функции на отрезке

13.

а) Решите уравнение

б) Укажите корни этого уравнения, принадлежащие отрезку

14.

В правильной треугольной пирамиде SABC сторона основания AB равна 12, а боковое ребро SA равно 13. Точки M и N — середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды.

а) Докажите, что плоскость α делит медиану CE основания в отношении 5 : 1, считая от точки C.

б) Найдите площадь многоугольника, являющегося сечением пирамиды SABC плоскостью α.

15.

Решите неравенство

16.

Квадрат ABCD вписан в окружность. Хорда CE пересекает его диагональ BD в точке K.

а) Докажите, что

б) Найдите отношение CK и KE, если

17.

Транcнациональная компания Amako Inc. решила провести недружественное поглощение компании First Aluminum Company (FAC) путем скупки акций миноритарных акционеров. Известно, что Amako было сделано три предложения владельцам акций FAC, при этом цена покупки одной акции каждый раз повышалась на 1/3. В результате второго предложения Amako сумела увеличить число выкупленных акций на 20% (после второй скупки общее число выкупленных акций увеличилось на 20%), а в результате скупки по третьей цене — еще на 20%. Найдите цену за одну акцию при третьем предложении и общее количество скупленных акций, если начальное предложение составляло $27 за одну акцию, а по второй цене Amako скупила 15 тысяч акций.

18.

Найдите все значения а, при каждом из которых решения неравенства образуют отрезок длины 1.

19.

Будем называть четырёхзначное число очень счастливым, если все цифры в его десятичной записи различны, а сумма первых двух из этих цифр равна сумме последних двух из них. Например, очень счастливым является число 3140.

а) Существуют ли двадцать последовательных четырёхзначных чисел, среди которых есть три очень счастливых?

б) Может ли разность двух очень счастливых четырёхзначных чисел равняться 2016?

в) Найдите наименьшее простое число, для которого не существует кратного ему очень счастливого четырёхзначного числа.