СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Вариант № 25976466

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 501201

На одну порцию рисовой каши требуется 40 грамм риса и 0,12 литра молока. Какое наибольшее количество порций каши может приготовить столовая, если в ее распоряжении есть 900 грамм риса и 3 литра молока?


Ответ:

2
Задание 2 № 26868

На ри­сун­ке по­ка­за­но из­ме­не­ние тем­пе­ра­ту­ры воз­ду­ха на про­тя­же­нии трех суток. По го­ри­зон­та­ли ука­зы­ва­ет­ся дата и время суток, по вер­ти­ка­ли — зна­че­ние тем­пе­ра­ту­ры в гра­ду­сах Цель­сия. Опре­де­ли­те по ри­сун­ку наи­боль­шую тем­пе­ра­ту­ру воз­ду­ха 22 ян­ва­ря. Ответ дайте в гра­ду­сах Цель­сия.


Ответ:

3
Задание 3 № 27947

На клет­ча­той бу­ма­ге с раз­ме­ром клет­ки 1 1 изоб­ражён пря­мо­уголь­ник. Най­ди­те ра­ди­ус окруж­но­сти, опи­сан­ной около этого пря­мо­уголь­ни­ка.


Ответ:

4
Задание 4 № 320207

Всем пациентам с подозрением на гепатит делают анализ крови. Если анализ выявляет гепатит, то результат анализа называется положительным. У больных гепатитом пациентов анализ даёт положительный результат с вероятностью 0,9. Если пациент не болен гепатитом, то анализ может дать ложный положительный результат с вероятностью 0,01. Известно, что 5% пациентов, поступающих с подозрением на гепатит, действительно больны гепатитом. Найдите вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на гепатит, будет положительным.


Ответ:

5
Задание 5 № 26646

Най­ди­те ко­рень урав­не­ния


Ответ:

6
Задание 6 № 27923

Бо­ко­вые сто­ро­ны рав­но­бед­рен­но­го тре­уголь­ни­ка равны 40, ос­но­ва­ние равно 48. Най­ди­те ра­ди­ус опи­сан­ной окруж­но­сти этого тре­уголь­ни­ка.


Ответ:

7
Задание 7 № 500248

На ри­сун­ке изоб­ражён гра­фик диф­фе­рен­ци­ру­е­мой функ­ции y = f(x). На оси абс­цисс от­ме­че­ны де­вять точек: x1, x2, x3, ..., x9. Среди этих точек най­ди­те все точки, в ко­то­рых про­из­вод­ная функ­ции f(x) от­ри­ца­тель­на. В от­ве­те ука­жи­те ко­ли­че­ство най­ден­ных точек.


Ответ:

8
Задание 8 № 27048

В сосуд, име­ю­щий форму пра­виль­ной тре­уголь­ной приз­мы, на­ли­ли воду. Уро­вень воды до­сти­га­ет 80 см. На какой вы­со­те будет на­хо­дить­ся уро­вень воды, если ее пе­ре­лить в дру­гой такой же сосуд, у ко­то­ро­го сто­ро­на ос­но­ва­ния в 4 раза боль­ше, чем у пер­во­го? Ответ вы­ра­зи­те в см.


Ответ:

9
Задание 9 № 26784

Най­ди­те , если и


Ответ:

10
Задание 10 № 27986

Расстояние (в км) от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до видимой им линии горизонта вычисляется по формуле , где  км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 4,8 км. К пляжу ведeт лестница, каждая ступенька которой имеет высоту 20 см. На какое наименьшее количество ступенек нужно подняться человеку, чтобы он увидел горизонт на расстоянии не менее 6,4 километров?


Ответ:

11
Задание 11 № 26596

Двое ра­бо­чих, ра­бо­тая вме­сте, могут вы­пол­нить ра­бо­ту за 12 дней. За сколь­ко дней, ра­бо­тая от­дель­но, вы­пол­нит эту ра­бо­ту пер­вый ра­бо­чий, если он за два дня вы­пол­ня­ет такую же часть ра­бо­ты, какую вто­рой – за три дня?


Ответ:

12
Задание 12 № 245177

Найдите точку максимума функции


Ответ:

13
Задание 13 № 519658

а) Решите уравнение .

б) Укажите все корни этого уравнения, принадлежащие промежутку .


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 14 № 517446

На рёбрах AB и BC треугольной пирамиды ABCD отмечены точки M и N соответственно, причём AM : BM = CN : NB = 1 : 2. Точки P и Q — середины сторон DA и DC соответственно.

а) Докажите, что P, Q, M и N лежат в одной плоскости.

б) Найти отношение объёмов многогранников, на которые плоскость PQM разбивает пирамиду.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 15 № 515669

Решите неравенство


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задание 16 № 517526

Дана трапеция с диагоналями равными 8 и 15. Сумма оснований равна 17.

а) Докажите, что диагонали перпендикулярны.

б) Найдите площадь трапеции.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 17 № 516053

Пенсионный фонд владеет акциями, цена которых к концу года t становится равной t2 тыс. руб. (т. е. к концу первого года они стоят 1 тыс. руб., к концу второго — 4 тыс. руб. и т. д.), в течение 20 лет. В конце любого года можно продать акции по их рыночной цене на конец года и положить вырученные деньги в банк под 25% годовых. В конце какого года нужно продать акции, чтобы прибыль была максимальной?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Задание 18 № 484633

При каких зна­че­ни­ях па­ра­мет­ров а и b си­сте­ма имеет бес­ко­неч­но много ре­ше­ний?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Задание 19 № 524237

На конкурсе «Мисс−261» выступление каждой участницы оценивают шесть судей. Каждый судья выставляет оценку — целое число баллов от 0 до 10 включительно. Известно, что за выступление Ксюши Путимцевой все члены жюри выставили различные оценки. По старой системе оценивания итоговый балл за выступление определяется как среднее арифметическое всех оценок судей. По новой системе оценивания итоговый балл вычисляется следующим образом: отбрасываются две наибольшие оценки, и считается среднее арифметическое четырех оставшихся оценок.

а) Может ли разность итоговых баллов, вычисленных по старой и новой системам оценивания, быть равной 2018?

б) Может ли разность итоговых баллов, вычисленных по старой и новой системам оценивания, быть равной

в) Найдите наименьшее возможное значение разности итоговых баллов, вычисленных по старой и новой системам оценивания.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения.