СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Вариант № 25976458

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 314968

Одна таблетка лекарства весит 20 мг и содержит 5% активного вещества. Ребёнку в возрасте до 6 месяцев врач прописывает 1,4 мг активного вещества на каждый килограмм веса в сутки. Сколько таблеток этого лекарства следует дать ребёнку в возрасте четырёх месяцев и весом 5 кг в течение суток?


Ответ:

2
Задание 2 № 512495

На рисунке показан график движения автомобиля по маршруту. На оси абсцисс откладывается время (в часах), на оси ординат — пройденный путь (в километрах). Найдите среднюю скорость движения автомобиля на данном маршруте. Ответ дайте в км/ч.


Ответ:

3
Задание 3 № 27950

На клет­ча­той бу­ма­ге с раз­ме­ром клет­ки 1 1 изоб­ражён рав­но­сто­рон­ний тре­уголь­ник. Най­ди­те ра­ди­ус опи­сан­ной около него окруж­но­сти.


Ответ:

4
Задание 4 № 320200

На фаб­ри­ке ке­ра­ми­че­ской по­су­ды 10% про­из­ведённых та­ре­лок имеют де­фект. При кон­тро­ле ка­че­ства про­дук­ции вы­яв­ля­ет­ся 80% де­фект­ных та­ре­лок. Осталь­ные та­рел­ки по­сту­па­ют в про­да­жу. Най­ди­те ве­ро­ят­ность того, что слу­чай­но вы­бран­ная при по­куп­ке та­рел­ка не имеет де­фек­тов. Ре­зуль­тат округ­ли­те до сотых.


Ответ:

5
Задание 5 № 77382

Ре­ши­те урав­не­ние Если урав­не­ние имеет более од­но­го корня, в от­ве­те ука­жи­те мень­ший из них.


Ответ:

6
Задание 6 № 27932

Ка­те­ты рав­но­бед­рен­но­го пря­мо­уголь­но­го тре­уголь­ни­ка равны Най­ди­те ра­ди­ус окруж­но­сти, впи­сан­ной в этот тре­уголь­ник.


Ответ:

7
Задание 7 № 317543

На рисунке изображен график функции и отмечены точки −2, −1, 1, 2. В какой из этих точек значение производной наибольшее? В ответе укажите эту точку.


Ответ:

8
Задание 8 № 245355

Куб вписан в шар радиуса Найдите объем куба.


Ответ:

9
Задание 9 № 26803

Най­ди­те , если при


Ответ:

10
Задание 10 № 27970

Для по­лу­че­ния на экра­не уве­ли­чен­но­го изоб­ра­же­ния лам­поч­ки в ла­бо­ра­то­рии ис­поль­зу­ет­ся со­би­ра­ю­щая линза с глав­ным фо­кус­ным рас­сто­я­ни­ем см. Рас­сто­я­ние от линзы до лам­поч­ки может из­ме­нять­ся в пре­де­лах от 30 до 50 см, а рас­сто­я­ние от линзы до экра­на – в пре­де­лах от 150 до 180 см. Изоб­ра­же­ние на экра­не будет чет­ким, если вы­пол­не­но со­от­но­ше­ние Ука­жи­те, на каком наи­мень­шем рас­сто­я­нии от линзы можно по­ме­стить лам­поч­ку, чтобы еe изоб­ра­же­ние на экра­не было чeтким. Ответ вы­ра­зи­те в сан­ти­мет­рах.


Ответ:

11
Задание 11 № 99599

Из пунк­та A кру­го­вой трас­сы вы­ехал ве­ло­си­пе­дист. Через 30 минут он еще не вер­нул­ся в пункт А и из пунк­та А сле­дом за ним от­пра­вил­ся мо­то­цик­лист. Через 10 минут после от­прав­ле­ния он до­гнал ве­ло­си­пе­ди­ста в пер­вый раз, а еще через 30 минут после этого до­гнал его во вто­рой раз. Най­ди­те ско­рость мо­то­цик­ли­ста, если длина трас­сы равна 30 км. Ответ дайте в км/ч.


Ответ:

12
Задание 12 № 503145

Найдите точку максимума функции


Ответ:

13
Задание 13 № 502999

а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку [−1; 2].


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 14 № 519515

В правильной четырёхугольной пирамиде PABCD сторона основания ABCD равна 12, боковое ребро PA . Через вершину A проведена плоскость α, перпендикулярная прямой PC и пересекающая ребро PC в точке K.

а) Докажите, что плоскость α делит высоту PH пирамиды PABCD в отношении 2 : 1, считая от вершины P.

б) Найдите расстояние между прямыми PH и BK.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 15 № 484579

Ре­ши­те не­ра­вен­ство


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задание 16 № 504546

На гипотенузу AB прямоугольного треугольника ABC опустили высоту CH. Из точки H на катеты опустили перпендикуляры HK и HE.

а) Докажите, что точки A, B, K и E лежат на одной окружности.

б) Найдите радиус этой окружности, если AB = 12, CH = 5.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 17 № 513302

На каждом из двух заводов работает по 100 человек. На первом заводе один рабочий изготавливает за смену 3 детали А или 1 деталь В. На втором заводе для изготовления t деталей (и А, и В) требуется t2 человеко-смен. Оба завода поставляют детали на комбинат, где собирают изделие, причем для его изготовления нужна 1 деталь А и 3 детали В. При этом заводы договариваются между собой изготавливать детали так, чтобы можно было собрать наибольшее количество изделий. Сколько изделий при таких условиях может собрать комбинат за смену?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Задание 18 № 519663

Найдите все значения параметра a, при каждом из которых система уравнений

 

 

имеет ровно два различных решения?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Задание 19 № 517567

Маша и Наташа делают фотографии. Каждый день каждая девочка делает на одну фотографию больше, чем в предыдущий день. В конце Наташа сделала на 1001 фотографию больше, чем Маша.

а) Могло ли это произойти за 7 дней?

б) Могло ли это произойти за 8 дней?

в) Какое максимальное количество фотографий могла сделать Наташа, если Маша в последний день сделала меньше 40 фотографий?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения.