СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Вариант № 25171629

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 77332

Выпускники 11а покупают букеты цветов для последнего звонка: из 3 роз каждому учителю и из 7 роз классному руководителю и директору. Они собираются подарить букеты 15 учителям (включая директора и классного руководителя), розы покупаются по оптовой цене 35 рублей за штуку. Сколько рублей стоят все розы?


Ответ:

2
Задание 2 № 26874

На ри­сун­ке жир­ны­ми точ­ка­ми по­ка­за­на цена зо­ло­та на мо­мент за­кры­тия бир­же­вых тор­гов во все ра­бо­чие дни с 5 по 28 марта 1996 года. По го­ри­зон­та­ли ука­зы­ва­ют­ся числа ме­ся­ца, по вер­ти­ка­ли — цена унции зо­ло­та в дол­ла­рах США. Для на­гляд­но­сти жир­ные точки на ри­сун­ке со­еди­не­ны ли­ни­ей. Опре­де­ли­те по ри­сун­ку, ка­ко­го числа цена зо­ло­та на мо­мент за­кры­тия тор­гов была наи­мень­шей за дан­ный пе­ри­од.


Ответ:

3
Задание 3 № 324463

На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC. Найдите длину его высоты, опущенной на продолжение стороны AB.


Ответ:

4
Задание 4 № 320211

Ав­то­ма­ти­че­ская линия из­го­тав­ли­ва­ет ба­та­рей­ки. Ве­ро­ят­ность того, что го­то­вая ба­та­рей­ка не­ис­прав­на, равна 0,02. Перед упа­ков­кой каж­дая ба­та­рей­ка про­хо­дит си­сте­му кон­тро­ля. Ве­ро­ят­ность того, что си­сте­ма за­бра­ку­ет не­ис­прав­ную ба­та­рей­ку, равна 0,99. Ве­ро­ят­ность того, что си­сте­ма по ошиб­ке за­бра­ку­ет ис­прав­ную ба­та­рей­ку, равна 0,01. Най­ди­те ве­ро­ят­ность того, что слу­чай­но вы­бран­ная ба­та­рей­ка будет за­бра­ко­ва­на си­сте­мой кон­тро­ля.


Ответ:

5
Задание 5 № 26662

Най­ди­те ко­рень урав­не­ния:

 


Ответ:

6
Задание 6 № 27327

В треугольнике , — высота, Найдите


Ответ:

7
Задание 7 № 27490

На ри­сун­ке изоб­ра­жен гра­фик функ­ции y = f(x), опре­де­лен­ной на ин­тер­ва­ле (−2; 12). Най­ди­те сумму точек экс­тре­му­ма функ­ции f(x).


Ответ:

8
Задание 8 № 27106

Через сред­нюю линию ос­но­ва­ния тре­уголь­ной приз­мы, объем ко­то­рой равен 32, про­ве­де­на плос­кость, па­рал­лель­ная бо­ко­во­му ребру. Най­ди­те объем от­се­чен­ной тре­уголь­ной приз­мы.


Ответ:

9
Задание 9 № 245171

Най­ди­те зна­че­ние вы­ра­же­ния

 


Ответ:

10
Задание 10 № 28004

Не­боль­шой мячик бро­са­ют под ост­рым углом к плос­кой го­ри­зон­таль­ной по­верх­но­сти земли. Рас­сто­я­ние, ко­то­рое про­ле­та­ет мячик, вы­чис­ля­ет­ся по фор­му­ле (м), где м/с – на­чаль­ная ско­рость мя­чи­ка, а – уско­ре­ние сво­бод­но­го па­де­ния (счи­тай­те м/с). При каком наи­мень­шем зна­че­нии угла (в гра­ду­сах) мячик пе­ре­ле­тит реку ши­ри­ной 20 м?


Ответ:

11
Задание 11 № 99613

Каж­дый из двух ра­бо­чих оди­на­ко­вой ква­ли­фи­ка­ции может вы­пол­нить заказ за 15 часов. Через 3 часа после того, как один из них при­сту­пил к вы­пол­не­нию за­ка­за, к нему при­со­еди­нил­ся вто­рой ра­бо­чий, и ра­бо­ту над за­ка­зом они до­ве­ли до конца уже вме­сте. Сколь­ко часов по­тре­бо­ва­лось на вы­пол­не­ние всего за­ка­за?


Ответ:

12
Задание 12 № 507908

Найдите наименьшее значение функции


Ответ:

13
Задание 13 № 507429

а) Ре­ши­те урав­не­ние:

б) Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 14 № 520803

В ци­лин­дре об­ра­зу­ю­щая пер­пен­ди­ку­ляр­на плос­ко­сти ос­но­ва­ния. На окруж­но­сти од­но­го из ос­но­ва­ний ци­лин­дра вы­бра­ны точки А и В, а на окруж­но­сти дру­го­го ос­но­ва­ния — точки В1 и С1, при­чем ВВ1 — об­ра­зу­ю­щая ци­лин­дра, а от­ре­зок АС1 пе­ре­се­ка­ет ось ци­лин­дра.

а) До­ка­жи­те, что угол АВС1 пря­мой.

б) Най­ди­те угол между пря­мы­ми ВВ1 и АС1, если АВ = 6, ВВ1 = 15, В1С1 = 8.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 15 № 507635

Ре­ши­те не­ра­вен­ство


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задание 16 № 514482

В тра­пе­ции ABCD точка E — се­ре­ди­на ос­но­ва­ния AD, точка M — се­ре­ди­на бо­ко­вой сто­ро­ны AB. От­рез­ки CE и DM пе­ре­се­ка­ют­ся в точке O.

а) До­ка­жи­те, что пло­ща­ди четырёхуголь­ни­ка AMOE и тре­уголь­ни­ка COD равны.

б) Най­ди­те, какую часть от пло­ща­ди тра­пе­ции со­став­ля­ет пло­щадь четырёхуголь­ни­ка AMOE, если BC = 3, AD = 4.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 17 № 520806

15-го декабря планируется взять кредит в банке на 21 месяц. Условия возврата таковы:

— 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца с 1-го по 20-й долг должен быть на 30 тысяч рублей меньше долга на 15-е число предыдущего месяца;

— к 15-му числу 21-го месяца кредит должен быть полностью погашен.

Какую сумму планируется взять в кредит, если общая сумма выплат после полного его погашения составит 1604 тысяч рублей?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Задание 18 № 514741

Най­ди­те все зна­че­ния a, при каж­дом из ко­то­рых урав­не­ние

имеет ровно два раз­лич­ных корня.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Задание 19 № 514485

На доске на­пи­са­но 10 не­от­ри­ца­тель­ных чисел. За один ход сти­ра­ют­ся два числа, а вме­сто них за­пи­сы­ва­ет­ся сумма, округлённая до це­ло­го числа (на­при­мер, вме­сто 5,5 и 3 за­пи­сы­ва­ет­ся 9, а вме­сто 3,3 и 5 за­пи­сы­ва­ет­ся 8).

а) При­ве­ди­те при­мер 10 не­це­лых чисел и по­сле­до­ва­тель­но­сти 9 ходов, после ко­то­рых на доске будет за­пи­са­но число, рав­ное сумме ис­ход­ных чисел.

б) Может ли после 9 ходов на доске быть на­пи­са­но число, от­ли­ча­ю­ще­е­ся от суммы ис­ход­ных чисел на 7?

в) На какое наи­боль­шее число могут от­ли­чать­ся числа, за­пи­сан­ные на доске после 9 ходов, вы­пол­нен­ных с одним и тем же на­бо­ром ис­ход­ных чисел в раз­лич­ном по­ряд­ке?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения.