СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Вариант № 24574048

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 77334

В об­мен­ном пунк­те 1 грив­на стоит 3 рубля 70 ко­пе­ек. От­ды­ха­ю­щие об­ме­ня­ли рубли на грив­ны и ку­пи­ли 3 кг по­ми­до­ров по цене 4 грив­ны за 1 кг. Во сколь­ко руб­лей обо­шлась им эта по­куп­ка? Ответ округ­ли­те до це­ло­го числа.


Ответ:

2
Задание 2 № 26871

На рисунке жирными точками показано суточное количество осадков, выпадавших в Казани с 3 по 15 февраля 1909 года. По горизонтали указываются числа месяца, по вертикали — количество осадков, выпавших в соответствующий день, в миллиметрах. Для наглядности жирные точки на рисунке соединены линией. Определите по рисунку, какого числа впервые выпало миллиметров осадков.


Ответ:

3
Задание 3 № 27581

Найдите площадь закрашенной фигуры на координатной плоскости.


Ответ:

4
Задание 4 № 320205

Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Статор» по очереди играет с командами «Ротор», «Мотор» и «Стартер». Найдите вероятность того, что «Статор» будет начинать только первую и последнюю игры.


Ответ:

5
Задание 5 № 26655

Найдите корень уравнения


Ответ:

6
Задание 6 № 27930

Угол между стороной правильного n-угольника, вписанного в окружность, и радиусом этой окружности, проведенным в одну из вершин стороны, равен 54°. Найдите n.


Ответ:

7
Задание 7 № 27492

На рисунке изображен график производной функции f(x), определенной на интервале (−8; 4). В какой точке отрезка [−7; −3] f(x) принимает наименьшее значение?

 

 


Ответ:

8
Задание 8 № 27102

Если каждое ребро куба увеличить на 1, то его объем увеличится на 19. Найдите ребро куба.


Ответ:

9
Задание 9 № 77388

Най­ди­те зна­че­ние вы­ра­же­ния при


Ответ:

10
Задание 10 № 27983

При движении ракеты еe видимая для неподвижного наблюдателя длина, измеряемая в метрах, сокращается по закону , где м – длина покоящейся ракеты, км/с – скорость света, а – скорость ракеты (в км/с). Какова должна быть минимальная скорость ракеты, чтобы еe наблюдаемая длина стала не более 4 м? Ответ выразите в км/с.


Ответ:

11
Задание 11 № 99610

По морю па­рал­лель­ны­ми кур­са­ми в одном на­прав­ле­нии сле­ду­ют два су­хо­гру­за: пер­вый дли­ной 120 мет­ров, вто­рой — дли­ной 80 мет­ров. Сна­ча­ла вто­рой су­хо­груз от­ста­ет от пер­во­го, и в не­ко­то­рый мо­мент вре­ме­ни рас­сто­я­ние от кормы пер­во­го су­хо­гру­за до носа вто­ро­го со­став­ля­ет 400 мет­ров. Через 12 минут после этого уже пер­вый су­хо­груз от­ста­ет от вто­ро­го так, что рас­сто­я­ние от кормы вто­ро­го су­хо­гру­за до носа пер­во­го равно 600 мет­рам. На сколь­ко ки­ло­мет­ров в час ско­рость пер­во­го су­хо­гру­за мень­ше ско­ро­сти вто­ро­го?


Ответ:

12
Задание 12 № 26728

Найдите точку максимума функции


Ответ:

13
Задание 13 № 514082

а) Решите уравнение

б) Укажите корни этого уравнения, принадлежащие отрезку


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 14 № 515782

В пра­виль­ной тре­уголь­ной приз­ме ABCA1B1C1 все рёбра равны 1.

а) До­ка­жи­те, что пря­мая AB1 па­рал­лель­на пря­мой, про­хо­дя­щей через се­ре­ди­ны от­рез­ков AC и BC1.

б) Най­ди­те ко­си­нус угла между пря­мы­ми AB1 и BC1.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 15 № 507582

Ре­ши­те не­ра­вен­ство


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задание 16 № 505473

В остроугольном треугольнике ABC провели высоту BH, из точки H на стороны AB и BC опустили перпендикуляры HK и HM соответственно.

а) Докажите, что треугольник MBK подобен треугольнику ABC.

б) Найдите отношение площади треугольника MBK к площади четырёхугольника AKMC, если BH = 2, а радиус окружности, описанной около треугольника ABC равен 4.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 17 № 520825

15-го декабря планируется взять кредит в банке на сумму 300 тысяч рублей на 21 месяц. Условия возврата таковы:

— 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца с 1-го по 20-й долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца;

— 15-го числа 20-го месяца долг составит 100 тысяч рублей;

— к 15-му числу 21-го месяца кредит должен быть полностью погашен.

Найдите общую сумму выплат после полного погашения кредита.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Задание 18 № 519519

Найдите все значения параметра a, при каждом из которых уравнение имеет единственное решение на отрезке .


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Задание 19 № 514485

На доске написано 10 неотрицательных чисел. За один ход стираются два числа, а вместо них записывается сумма, округлённая до целого числа (например, вместо 5,5 и 3 записывается 9, а вместо 3,3 и 5 записывается 8).

а) Приведите пример 10 нецелых чисел и последовательности 9 ходов, после которых на доске будет записано число, равное сумме исходных чисел.

б) Может ли после 9 ходов на доске быть написано число, отличающееся от суммы исходных чисел на 7?

в) На какое наибольшее число могут отличаться числа, записанные на доске после 9 ходов, выполненных с одним и тем же набором исходных чисел в различном порядке?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения.