СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Вариант № 24574040

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 503131

Поезд отправился из Санкт-Петербурга в 23 часа 50 минут и прибыл в Москву в 7 часов 50 минут следующих суток. Сколько часов поезд находился в пути?


Ответ:

2
Задание 2 № 26875

На рисунке жирными точками показана цена олова на момент закрытия биржевых торгов во все рабочие дни с 3 по 18 сентября 2007 года. По горизонтали указываются числа месяца, по вертикали — цена тонны олова в долларах США. Для наглядности жирные точки на рисунке соединены линией. Определите по рисунку, какого числа цена олова на момент закрытия торгов была наибольшей за данный период.


Ответ:

3
Задание 3 № 27548

Найдите площадь треугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


Ответ:

4
Задание 4 № 320211

Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,99. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,01. Найдите вероятность того, что случайно выбранная батарейка будет забракована системой контроля.


Ответ:

5
Задание 5 № 26662

Найдите корень уравнения:

 


Ответ:

6
Задание 6 № 27916

Найдите сторону правильного шестиугольника, описанного около окружности, радиус которой равен


Ответ:

7
Задание 7 № 27488

На рисунке изображен график функции , определенной на интервале (−5; 5). Определите количество целых точек, в которых производная функции  отрицательна.


Ответ:

8
Задание 8 № 324454

Площадь основания конуса равна 18. Плоскость, параллельная плоскости основания конуса, делит его высоту на отрезки длиной 3 и 6, считая от вершины. Найдите площадь сечения конуса этой плоскостью.


Ответ:

9
Задание 9 № 26775

Найдите , если и


Ответ:

10
Задание 10 № 27969

Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому , где — мощность излучения звезды (в Ваттах), — постоянная, м — площадь поверхности звезды (в квадратных метрах), а — температура (в кельвинах). Известно, что площадь поверхности некоторой звезды равна м, а мощность её излучения равна Вт. Найдите температуру этой звезды в Кельвинах.


Ответ:

11
Задание 11 № 323849

Два человека отправляются из одного дома на прогулку до опушки леса, находящейся в 4,4 км от дома. Один идёт со скоростью 2,5 км/ч, а другой — со скоростью 3 км/ч. Дойдя до опушки, второй с той же скоростью возвращается обратно. На каком расстоянии от дома произойдёт их встреча? Ответ дайте в километрах.


Ответ:

12
Задание 12 № 245179

Найдите наименьшее значение функции


Ответ:

13
Задание 13 № 512335

а) Решите уравнение

 

б) Найдите все корни этого уравнения, принадлежащие отрезку


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 14 № 516799

Сечением прямоугольного параллелепипеда ABCDA1B1C1D1 плоскостью α содержащей прямую BD1 и параллельной прямой AC, является ромб.

а) Докажите, что грань ABCD — квадрат.

б) Найдите угол между плоскостями α и BCC1, если AA1 = 6, AB = 4.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 15 № 519660

Решите неравенство .


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задание 16 № 505568

Прямые, содержащие катеты AC и CB прямоугольного треугольника АСВ, являются общими внутренними касательными к окружностям радиусов 2 и 4. Прямая, содержащая гипотенузу АВ, является их общей внешней касательной.

а) Докажите, что длина отрезка внутренней касательной, проведенной из вершины острого угла треугольника до одной из окружностей, равна половине периметра треугольника АСВ.

б) Найдите площадь треугольника АСВ.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 17 № 520787

15-го декабря планируется взят кредит в банке на 1 000 000 рублей на (n + 1) месяц. Условия его возврата таковы:

— 1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца;

— cо 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца с 1-го по n-й долг должен быть на 40 тысяч рублей меньше долга на 15-е число предыдущего месяца;

— 15-го числа n-го месяца долг составит 200 тысяч рублей;

— к 15-му числу (n + 1)-го месяца кредит должен быть полностью погашен.

Найдите r, если известно, что общая сумма выплат после полного погашения кредита составит 1378 тысяч рублей.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Задание 18 № 520826

Найти все значения a, при каждом из которых уравнение

имеет хотя бы один корень.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Задание 19 № 517451

На доске на­пи­са­но 30 раз­лич­ных на­ту­раль­ных чисел, де­ся­тич­ная за­пись каж­до­го из ко­то­рых окан­чи­ва­ет­ся или на цифру 2, или на цифру 6. Сумма на­пи­сан­ных чисел равна 2454.

а) Может ли на доске быть по­ров­ну чисел, окан­чи­ва­ю­щих­ся на 2 и на 6.

б) Может ли ровно одно число на доске окан­чи­ва­ет­ся на 6?

в) Какое наи­мень­шее ко­ли­че­ство чисел, окан­чи­ва­ю­щих­ся на 6, может быть за­пи­са­но на доске?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения.