№№ заданий Пояснения Ответы Ключ Добавить инструкцию Критерии
Источник Раздел Раздел кодификатора ФИПИ/Решу ЕГЭ Справка
PDF-версия PDF-версия (вертикальная) PDF-версия (крупный шрифт) PDF-версия (с большим полем) Версия для копирования в MS Word
Вариант № 23449736

1.

Спидометр автомобиля показывает скорость в милях в час. Какую скорость (в милях в час) показывает спидометр, если автомобиль движется со скоростью 36 км в час? (Считайте, что 1 миля равна 1,6 км.)

2.

На рисунке жирными точками показана среднемесячная температура воздуха в Сочи за каждый месяц 1920 года. По горизонтали указываются месяцы, по вертикали — температура в градусах Цельсия. Для наглядности жирные точки соединены линией. Определите по рисунку наименьшую среднемесячную температуру в период с мая по декабрь 1920 года. Ответ дайте в градусах Цельсия.

3.

На клетчатой бумаге с размером клетки изображён квадрат. Найдите радиус окружности, вписанной в этот квадрат.

4.

В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,3. Вероятность того, что кофе закончится в обоих автоматах, равна 0,12. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.

5.

Найдите корень уравнения

6.

Около окружности, радиус которой равен 3, описан многоугольник, периметр которого равен 20. Найдите его площадь.

7.

На рисунке изображён график некоторой функции y = f(x). Функция  — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.

8.

Основанием пирамиды служит прямоугольник, одна боковая грань перпендикулярна плоскости основания, а три другие боковые грани наклонены к плоскости основания под углом 60°. Высота пирамиды равна 6. Найдите объем пирамиды.

9.

Найдите значение выражения при

10.

В боковой стенке высокого цилиндрического бака у самого дна закреплeн кран. После его открытия вода начинает вытекать из бака, при этом высота столба воды в нeм, выраженная в метрах, меняется по закону где – время в секундах, прошедшее с момента открытия крана, – начальная высота столба воды, – отношение площадей поперечных сечений крана и бака, а – ускорение свободного падения (считайте м/с). Через сколько секунд после открытия крана в баке останется четверть первоначального объeма воды?

11.

Из городов A и B навстречу друг другу выехали мотоциклист и велосипедист. Мотоциклист приехал в B на 3 часа раньше, чем велосипедист приехал в A, а встретились они через 48 минут после выезда. Сколько часов затратил на путь из B в A велосипедист?

12.

Найдите наименьшее значение функции на отрезке [−2,5; 0].

13.

а) Решите уравнение:

б) Найдите все корни этого уравнения, принадлежащие отрезку

14.

В правильной треугольной призме АВСА′B′C′ сторона основания АВ равна 6, а боковое ребро АА′ равно 3. На ребре АВ отмечена точка К так, что АК = 1. Точки М и L — середины рёбер А′С′ и В′С′ соответственно. Плоскость γ параллельна прямой АС и содержит точки К и L.

а) Докажите, что прямая ВМ перпендикулярна плоскости γ;

б) Найдите расстояние от точки С до плоскости γ.

15.

Решите неравенство

16.

Дана трапеция с диагоналями равными 8 и 15. Сумма оснований равна 17.

а) Докажите, что диагонали перпендикулярны.

б) Найдите площадь трапеции.

17.

Банк планирует вложить на 1 год 30% имеющихся у него средств клиентов в акции золотодобывающего комбината, а остальные 70% — в строительство торгового комплекса. В зависимости от обстоятельств первый проект может принести банку прибыль в размере от 32% до 37% годовых, а второй проект — от 22 до 27% годовых. В конце года банк обязан вернуть деньги клиентам и выплатить им проценты по заранее установленной ставке, уровень которой должен находиться в пределах от 10% до 20% годовых. Определите, какую наименьшую и наибольшую чистую прибыль в процентах годовых от суммарных вложений в покупку акций и строительство торгового комплекса может при этом получить банк.

18.

Найдите все значения при каждом из которых система

имеет единственное решение.

19.

Пусть q — наименьшее общее кратное, а d — наибольший общий делитель натуральных чисел x и y, удовлетворяющих равенству 3x = 8y − 29.

а) Может ли быть равным 170?

б) Может ли быть равным 2?

в) Найдите наименьшее значение