СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Вариант № 22713205

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 501737

В квартире, где про­жи­ва­ет Екатерина, уста­нов­лен при­бор учёта рас­хо­да хо­лод­ной воды (счётчик). Пер­во­го сен­тяб­ря счётчик по­ка­зы­вал рас­ход 189 куб.м воды, а 1 октября — 204 куб. м. Какую сумму долж­на за­пла­тить Ека­те­ри­на за хо­лод­ную воду за сентябрь, если цена 1 куб. м хо­лод­ной воды со­став­ля­ет 16 руб. 90 коп.? Ответ дайте в рублях.


Ответ:

2
Задание 2 № 263867

Когда са­мо­лет на­хо­дит­ся в го­ри­зон­таль­ном полете, подъ­ем­ная сила, дей­ству­ю­щая на крылья, за­ви­сит толь­ко от скорости. На ри­сун­ке изоб­ра­же­на эта за­ви­си­мость для не­ко­то­ро­го самолета. На оси абс­цисс от­кла­ды­ва­ет­ся ско­рость (в ки­ло­мет­рах в час), на оси ор­ди­нат – сила (в тон­нах силы). Опре­де­ли­те по рисунку, чему равна подъ­ем­ная сила (в тон­нах силы) при ско­ро­сти 200 км/ч?


Ответ:

3
Задание 3 № 254851

Най­ди­те пло­щадь че­ты­рех­уголь­ни­ка, изоб­ра­жен­но­го на клет­ча­той бу­ма­ге с раз­ме­ром клет­ки 1 см 1 см (см. рис.). Ответ дайте в квад­рат­ных сан­ти­мет­рах.


Ответ:

4
Задание 4 № 321301

На борту самолёта 12 мест рядом с за­пас­ны­ми вы­хо­да­ми и 21 мест за пе­ре­го­род­ка­ми, раз­де­ля­ю­щи­ми са­ло­ны. Осталь­ные места не­удоб­ны для пас­са­жи­ра вы­со­ко­го роста. Пас­са­жир В. вы­со­ко­го роста. Най­ди­те ве­ро­ят­ность того, что на ре­ги­стра­ции при слу­чай­ном вы­бо­ре места пас­са­жи­ру В. до­ста­нет­ся удоб­ное место, если всего в самолёте 100 мест.

 

 


Ответ:

5
Задание 5 № 77378

Решите уравнение


Ответ:

6
Задание 6 № 27827

Точка пересечения биссектрис двух углов параллелограмма, прилежащих к одной стороне, принадлежит противоположной стороне. Меньшая сторона параллелограмма равна 5. Найдите его большую сторону.


Ответ:

7
Задание 7 № 317544

На ри­сун­ке изоб­ра­жен гра­фик функ­ции и от­ме­че­ны точки −2, −1, 1, 4. В какой из этих точек зна­че­ние про­из­вод­ной наи­мень­шее? В от­ве­те ука­жи­те эту точку.


Ответ:

8
Задание 8 № 5077

Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 18. Найдите площадь поверхности шара.


Ответ:

9
Задание 9 № 26784

Найдите , если и


Ответ:

10
Задание 10 № 513891

Груз массой 0,4 кг колеблется на пружине. Его скорость v меняется по закону где t — время с момента начала колебаний, T = 8 с — период колебаний, м/с. Кинетическая энергия E (в джоулях) груза вычисляется по формуле где m — масса груза в килограммах, v — скорость груза в м/с. Найдите кинетическую энергию груза через 3 секунды после начала колебаний. Ответ дайте в джоулях.


Ответ:

11
Задание 11 № 99570

Митя, Антон, Гоша и Борис учредили компанию с уставным капиталом 200000 рублей. Митя внес 14% уставного капитала, Антон — 42000 рублей, Гоша — 0,12 уставного капитала, а оставшуюся часть капитала внес Борис. Учредители договорились делить ежегодную прибыль пропорционально внесенному в уставной капитал вкладу. Какая сумма от прибыли 1000000 рублей причитается Борису? Ответ дайте в рублях.


Ответ:

12
Задание 12 № 77498

Найдите наибольшее значение функции на отрезке


Ответ:

13
Задание 13 № 516380

а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 14 № 512357

Все рёбра правильной треугольной пирамиды SBCD с вершиной S равны 9.

Основание O высоты SO этой пирамиды является серединой отрезка SS1, M — середина ребра SB , точка L лежит на ребре CD так, что CL : LD = 7 : 2.

а) Докажите, что сечение пирамиды SBCD плоскостью S1LM — равнобедренная трапеция.

б) Вычислите длину средней линии этой трапеции.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 15 № 514644

Решите неравенство


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задание 16 № 517529

Дана трапеция ABCD с основаниями AD и ВС, причем и точка M внутри трапеции, такая, что

а) Докажите, что АM = DM.

б) Найдите угол BAD, если угол CDA равен 50°, а высота, проведённая из точки M к АD, равна BC.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 17 № 508585

В банк был по­ло­жен вклад под 10% го­до­вых. Через год, после на­чис­ле­ния про­цен­тов, вклад­чик снял со счета 2000 руб­лей, а еще через год снова внес 2000 руб­лей. Вслед­ствие этих дей­ствий через три года со вре­ме­ни от­кры­тия вкла­да вклад­чик по­лу­чил сумму мень­ше за­пла­ни­ро­ван­ной (если бы не было про­ме­жу­точ­ных опе­ра­ций со вкла­дом). На сколь­ко руб­лей мень­ше за­пла­ни­ро­ван­ной суммы он по­лу­чил?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Задание 18 № 510132

Най­ди­те все зна­че­ния при каж­дом из ко­то­рых си­сте­ма

имеет един­ствен­ное ре­ше­ние.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Задание 19 № 510077

На доске написали несколько не обязательно различных двузначных натуральных чисел без нулей в десятичной записи. Сумма этих чисел оказалась равной 2970. В каждом числе поменяли местами первую и вторую цифры (например, число 16 заменили на число 61).

а) Приведите пример исходных чисел, для которых сумма получившихся чисел ровно в 3 раза меньше, чем сумма исходных чисел.

б) Могла ли сумма получившихся чисел быть ровно в 5 раз меньше, чем сумма исходных чисел?

в) Найдите наименьшее возможное значение суммы получившихся чисел.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения.