СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Вариант № 22164212

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 504422

Опто­вая цена учеб­ни­ка 150 руб­лей. Роз­нич­ная цена на 25% выше опто­вой. Какое наи­боль­шее число таких учеб­ни­ков можно ку­пить по роз­нич­ной цене на 7900 руб­лей?


Ответ:

2
Задание 2 № 512345

На ри­сун­ке жир­ны­ми точ­ка­ми по­ка­за­на цена зо­ло­та на мо­мент за­кры­тия бир­же­вых тор­гов во все ра­бо­чие дни с 3 по 24 марта 2002 года. По го­ри­зон­та­ли ука­зы­ва­ют­ся числа месяца, по вер­ти­ка­ли — цена унции зо­ло­та в дол­ла­рах США. Для на­гляд­но­сти жир­ные точки на ри­сун­ке со­еди­не­ны линией. Опре­де­ли­те по ри­сун­ку наи­боль­шую цену зо­ло­та на мо­мент за­кры­тия тор­гов в пе­ри­од с 8 по 21 марта (в дол­ла­рах США за унцию).

 


Ответ:

3
Задание 3 № 501203

Най­ди­те пло­щадь фи­гу­ры, изоб­ра­жен­ной на клет­ча­той бу­ма­ге с раз­ме­ром клет­ки 1 см   1 см. Ответ дайте в квад­рат­ных сан­ти­мет­рах.


Ответ:

4
Задание 4 № 513615

На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Ве­ро­ят­ность того, что это во­прос на тему «Впи­сан­ная окружность», равна 0,25. Ве­ро­ят­ность того, что это во­прос на тему «Параллелограмм», равна 0,35. Вопросов, ко­то­рые од­но­вре­мен­но от­но­сят­ся к этим двум темам, нет. Най­ди­те ве­ро­ят­ность того, что на эк­за­ме­не школь­ни­ку до­ста­нет­ся во­прос по одной из этих двух тем.


Ответ:

5
Задание 5 № 2997

Найдите корень уравнения


Ответ:

6
Задание 6 № 56355

Площадь ромба равна 66. Одна из его диагоналей равна 4. Найдите другую диагональ.


Ответ:

7
Задание 7 № 510064

На ри­сун­ке изображён гра­фик функ­ции и шесть точек на оси абсцисс. В сколь­ких из этих точек про­из­вод­ная функ­ции отрицательна?

 


Ответ:

8
Задание 8 № 266513

Найдите объем многогранника, вершинами которого являются точки A, B, C, B1 правильной треугольной призмы ABCA1B1C1, площадь основания которой равна 6, а боковое ребро равно 8.


Ответ:

9
Задание 9 № 77398

Найдите значение выражения


Ответ:

10
Задание 10 № 28004

Не­боль­шой мячик бро­са­ют под ост­рым углом к плос­кой го­ри­зон­таль­ной по­верх­но­сти земли. Рас­сто­я­ние, ко­то­рое про­ле­та­ет мячик, вы­чис­ля­ет­ся по фор­му­ле (м), где м/с – на­чаль­ная ско­рость мя­чи­ка, а – уско­ре­ние сво­бод­но­го па­де­ния (счи­тай­те м/с). При каком наи­мень­шем зна­че­нии угла (в гра­ду­сах) мячик пе­ре­ле­тит реку ши­ри­ной 20 м?


Ответ:

11
Задание 11 № 522146

Из пункта А в пункт В, расстояние между которыми 30 км, одновременно выехали автомобилист и велосипедист. Известно, что в час автомобилист проезжает на 100 км больше, чем велосипедист. Определите скорость велосипедиста, если известно, что он прибыл в пункт В на 1 час 15 минут позже автомобилиста. Ответ дайте в км/ч.


Ответ:

12
Задание 12 № 315635

Найдите наименьшее значение функции на отрезке


Ответ:

13
Задание 13 № 513751

а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 14 № 510107

В правильной треугольной пирамиде SABC сторона основания AB равна 24, а боковое ребро SA равно 19. Точки M и N — середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды.

а) Докажите, что плоскость α делит медиану CE основания в отношении 5 : 1, считая от точки C.

б) Найдите площадь многоугольника, являющегося сечением пирамиды SABC плоскостью α.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 15 № 507635

Ре­ши­те не­ра­вен­ство


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задание 16 № 517526

Дана трапеция с диагоналями равными 8 и 15. Сумма оснований равна 17.

а) Докажите, что диагонали перпендикулярны.

б) Найдите площадь трапеции.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 17 № 517753

Вадим яв­ля­ет­ся вла­дель­цем двух за­во­дов в раз­ных го­ро­дах. На за­во­дах про­из­во­дят­ся аб­со­лют­но оди­на­ко­вые то­ва­ры при ис­поль­зо­ва­нии оди­на­ко­вых тех­но­ло­гий. Если ра­бо­чие на одном из за­во­дов тру­дят­ся сум­мар­но часов в не­де­лю, то за эту не­де­лю они про­из­во­дят t еди­ниц то­ва­ра.

За каж­дый час ра­бо­ты на за­во­де, рас­по­ло­жен­ном в пер­вом го­ро­де, Вадим пла­тит ра­бо­че­му 500 руб­лей, а на за­во­де, рас­по­ло­жен­ном во вто­ром го­ро­де, — 300 руб­лей.

Вадим готов вы­де­лять 1 200 000 руб­лей в не­де­лю на опла­ту труда ра­бо­чих. Какое наи­боль­шее ко­ли­че­ство еди­ниц то­ва­ра можно про­из­ве­сти за не­де­лю на этих двух за­во­дах?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Задание 18 № 515748

Най­ди­те все зна­че­ния а, при каж­дом из ко­то­рых мно­же­ство ре­ше­ний не­ра­вен­ства

со­дер­жит от­ре­зок

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Задание 19 № 514539

На доске на­пи­са­ны числа 2 и 3. За один ход два числа a и b, за­пи­сан­ных на доске за­ме­ня­ет­ся на два числа: a + b и 2a − 1 или a + b и 2b − 1.

При­мер: числа 2 и 3 за­ме­ня­ют­ся на 3 и 5, на 5 и 5, со­от­вет­ствен­но.

а) При­ве­ди­те при­мер по­сле­до­ва­тель­но­сти ходов, после ко­то­рых одно из чисел, на­пи­сан­ных на доске, ока­жет­ся чис­лом 19.

б) Может ли после 50 ходов одно из двух чисел, на­пи­сан­ных на доске, ока­зать­ся чис­лом 100.

в) Сде­ла­ли 2015 ходов, причём на доске ни­ко­гда не было на­пи­са­но од­но­вре­мен­но двух рав­ных чисел. Какое наи­мень­шее зна­че­ние может при­ни­мать раз­ность боль­ше­го и мень­ше­го из по­лу­чен­ных чисел?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения.