№№ заданий Пояснения Ответы Ключ Добавить инструкцию Критерии
Источник Классификатор базовой части Классификатор планиметрии Классификатор стереометрии Методы алгебры Методы геометрии Раздел Раздел кодификатора ФИПИ/Решу ЕГЭ Справка
PDF-версия PDF-версия (вертикальная) PDF-версия (крупный шрифт) PDF-версия (с большим полем) Версия для копирования в MS Word
Вариант № 22164211

1.

Цена на электрический чайник была повышена на 23% и составила 2337 рублей. Сколько рублей стоил чайник до повышения цены?

2.

На рисунке жирными точками показана цена серебра, установленная Центробанком РФ во все рабочие дни в октябре 2009 года. По горизонтали указываются числа месяца, по вертикали — цена серебра в рублях за грамм. Для наглядности жирные точки на рисунке соединены линией. Определите по рисунку, какого числа цена серебра была максимальной за данный период.

3.

На клетчатой бумаге с размером клетки 1×1 изображён равнобедренный прямоугольный треугольник. Найдите длину его медианы, проведённой к гипотенузе.

4.

В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,9 погода завтра будет такой же, как и сегодня. 5 апреля погода в Волшебной стране хорошая. Найдите вероятность того, что 8 апреля в Волшебной стране будет отличная погода.

5.

Найдите корень уравнения: Если уравнение имеет более одного корня, укажите меньший из них.

6.

Най­ди­те хорду, на ко­то­рую опи­ра­ет­ся угол , впи­сан­ный в окруж­ность ра­ди­у­са 43.

7.

Ма­те­ри­аль­ная точка M на­чи­на­ет дви­же­ние из точки A и дви­жет­ся по пря­мой на про­тя­же­нии 12 се­кунд. Гра­фик по­ка­зы­ва­ет, как ме­ня­лось рас­сто­я­ние от точки A до точки M со вре­ме­нем. На оси абс­цисс от­кла­ды­ва­ет­ся время t в се­кун­дах, на оси ор­ди­нат — рас­сто­я­ние s.

Опре­де­ли­те, сколь­ко раз за время дви­же­ния ско­рость точки M об­ра­ща­лась в ноль (на­ча­ло и конец дви­же­ния не учи­ты­вай­те).

8.

В прямоугольном параллелепипеде известно, что , , Найдите длину ребра

9.

Найдите значение выражения

10.

В телевизоре ёмкость высоковольтного конденсатора  Ф. Параллельно с конденсатором подключeн резистор с сопротивлением  Ом. Во время работы телевизора напряжение на конденсаторе  кВ. После выключения телевизора напряжение на конденсаторе убывает до значения U (кВ) за время, определяемое выражением (с), где  — постоянная. Определите (в киловольтах), наибольшее возможное напряжение на конденсаторе, если после выключения телевизора прошло 28 с. Ответ дайте в киловольтах.

11.

Смешав 43‐процентный и 89‐процентный растворы кислоты и добавив 10 кг чистой воды, получили 69‐процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50‐процентного раствора той же кислоты, то получили бы 73‐процентный раствор кислоты. Сколько килограммов 43‐процентного раствора использовали для получения смеси?

12.

Найдите наибольшее значение функции на отрезке

13.

а) Решите уравнение:

 

б) Найдите все корни этого уравнения, принадлежащие отрезку

14.

В правильной треугольной призме ABCA1B1C1 сторона основания равна 12, а боковое ребро AA1 равно На рёбрах AB и B1C1 отмечены точки K и L, соответственно, причём AK = B1L = 3. Точка M — середина ребра A1C1. Плоскость γ параллельна ребру AC и содержит точки K и L.

а) Докажите, что прямая BM перпендикулярна плоскости γ.

б) Найдите расстояние от точки C до плоскости γ.

15.

Решите неравенство:

16.

Известно, что АBCD трапеция, АD = 2BC, AD, BC — основания. Точка M такова, что углы АBM и MCD прямые.

а) Доказать, что MA = MD.

б) Расстояние от M до AD равно BC, а угол АDC равен 55°. Найдите угол BAD.

17.

Из­вест­но, что вклад, на­хо­дя­щий­ся в банке с на­ча­ла года, воз­рас­та­ет к концу года на опре­де­лен­ный про­цент, свой для каж­до­го банка. В на­ча­ле года Сте­пан по­ло­жил 60% не­ко­то­рой суммы денег в пер­вый банк, а остав­шу­ю­ся часть суммы во вто­рой банк. К концу года сумма этих вкла­дов стала равна 590 000 руб., а к концу сле­ду­ю­ще­го года 701 000 руб. Если бы Сте­пан пер­во­на­чаль­но по­ло­жил 60% своей суммы во вто­рой банк, а остав­шу­ю­ся часть в пер­вый, то по ис­те­че­нии од­но­го года сумма вкла­дов стала бы рав­ной 610 000 руб. Ка­ко­ва была бы сумма вкла­дов в этом слу­чае к концу вто­ро­го года?

18.

Найдите все значения при каждом из которых наименьшее значение функции

больше

19.

Пусть q — наименьшее общее кратное, а d — наибольший общий делитель натуральных чисел x и y, удовлетворяющих равенству

а) Может ли быть равным 204?

б) Может ли быть равным 2?

в) Найдите наименьшее значение