математика
Информатика
Русский язык
Английский язык
Немецкий язык
Французcкий язык
Испанский язык
Физика
Химия
Биология
География
Обществознание
Литература
История
сайты - меню - вход - новости




Вариант № 20755056

Ответом к заданиям 1—12 является целое число или конечная десятичная дробь. Дробную часть от целой отделяйте десятичной запятой. Единицы измерений писать не нужно.


Если ва­ри­ант задан учителем, вы можете вписать ответы на задания части С или загрузить их в систему в одном из графических форматов. Учитель уви­дит ре­зуль­та­ты вы­пол­не­ния заданий части В и смо­жет оце­нить за­гру­жен­ные от­ве­ты к части С. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей статистике.



Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 83781

 

Студент получил свой первый гонорар в размере 900 рублей (без учёта налогов) за выполненный перевод. Он решил на все полученные деньги купить букет лилий для своей учительницы английского языка. Какое наибольшее количество лилий сможет купить студент, если удержанный у него налог на доходы составляет 13% гонорара, лилии стоят 120 рублей за штуку и букет должен состоять из нечетного числа цветов?


Ответ:

2
Задание 2 № 27541

1

На графике показан процесс разогрева двигателя легкового автомобиля при температуре окружающего воздуха 20°. На оси абсцисс откладывается время в минутах, прошедшее от запуска двигателя, на оси ординат — температура двигателя в градусах Цельсия. Водитель может начинать движение, когда температура двигателя достигнет 60°. Какое наименьшее количество минут потребуется, чтобы водитель мог начать движение?


Ответ:

3
Задание 3 № 250949

На клетчатой бумаге с размером клетки изображён круг. Найдите площадь закрашенного сектора. Ответ дайте в квадратных сантиметрах.


Ответ:

4
Задание 4 № 286231

Перед началом первого тура чемпионата по шахматам участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 шахматистов, среди которых 18 спортсменов из России, в том числе Федор Волков. Найдите вероятность того, что в первом туре Федор Волков будет играть с каким-либо шахматистом из России.


Ответ:

5
Задание 5 № 10149

Найдите корень уравнения:


Ответ:

6
Задание 6 № 505118

В тре­уголь­ни­ке ABC угол A равен 135°. Про­дол­же­ния высот BD и CE пе­ре­се­ка­ют­ся в точке O. Най­ди­те угол DOE. Ответ дайте в градусах.


Ответ:

7
Задание 7 № 9045

На рисунке изображен график производной функции , определенной на интервале Найдите точку экстремума функции на отрезке


Ответ:

8
Задание 8 № 516326

В правильной четырёхугольной пирамиде точка — центр основания, — вершина, Найдите длину отрезка .


Ответ:

9
Задание 9 № 26819

Найдите значение выражения , если , а


Ответ:

10
Задание 10 № 516377

Рейтинг интернет-магазина вычисляется по формуле , где , — средняя оценка магазина покупателями, — оценка магазина, данная экспертами, — число покупателей, оценивших магазин. Найдите рейтинг интернет-магазина, если число покупателей, оценивших магазин, равно , их средняя оценка равна , а оценка экспертов равна


Ответ:

11
Задание 11 № 505468

Имеется два сплава. Первый содержит 10% никеля, второй – 35% никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава была меньше массы второго?


Ответ:

12
Задание 12 № 70487

Найдите наименьшее значение функции на отрезке


Ответ:

13
Задание 13 № 485991

а) Решите уравнение

 

б) Укажите корни уравнения, принадлежащие отрезку


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 14 № 515687

Ребро SA пирамиды SABC перпендикулярно плоскости основания ABC.

а) Докажите, что высота пирамиды, проведённая из точки A, делится плоскостью, проходящей через середины рёбер AB, AC и SA, пополам.

б) Найдите расстояние от вершины A до этой плоскости, если


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 15 № 515726

Решите неравенство


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задание 16 № 513349

Первая окружность с центром O, вписанная в равнобедренный треугольник KLM, касается боковой стороны KL в точке B, а основания ML — в точке A. Вторая окружность с центром O1 касается основания ML и продолжений боковых сторон.

а) Докажите, что треугольник OLO1 прямоугольный.

б) Найдите радиус второй окружности, если известно, что радиус первой равен 6 и AK = 16.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 17 № 517222

У фермера есть два поля, каждое площадью 15 гектаров. На каждом поле можно выращивать картофель и свёклу, поля можно делить между этими культурами в любой пропорции. Урожайность картофеля на первом поле составляет 400 ц/га, а на втором — 300 ц/га. Урожайность свёклы на первом поле составляет 250 ц/га, а на втором — 400 ц/га.

Фермер может продавать картофель по цене 2000 руб. за центнер, а свёклу — по цене 3000 руб. за центнер. Какой наибольший доход может получить фермер?


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Задание 18 № 485946

Найдите все значения , при каждом из которых наименьшее значение функции

больше, чем


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Задание 19 № 505433

Несколько экспертов оценивают несколько кинофильмов. Каждый из них выставляет оценку каждому кинофильму — целое число баллов от 1 до 10 включительно. Известно, что каждому кинофильму все эксперты выставили различные оценки. Рейтинг кинофильма — это среднее геометрическое оценок всех экспертов. Среднее геометрическое чисел равно Оказалось, что рейтинги всех кинофильмов — различные целые числа.

а) Могло ли быть 2 эксперта и 5 кинофильмов?

б) Могло ли быть 3 эксперта и 4 кинофильма?

в) При каком наибольшем количестве экспертов описанная ситуация возможна для одного кинофильма?


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения; если работа задана учителем, она будет ему отправлена.