СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Вариант № 20387592

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 24805

Сырок стоит 8 рублей 20 копеек. Какое наибольшее число сырков можно купить на 50 рублей?


Ответ:

2
Задание 2 № 509145

На диа­грам­ме по­ка­за­на сред­не­ме­сяч­ная тем­пе­ра­ту­ра воз­ду­ха в Санкт-Петербурге за каж­дый месяц 1999 года. По го­ри­зон­та­ли ука­зы­ва­ют­ся месяцы, по вер­ти­ка­ли — тем­пе­ра­ту­ра в гра­ду­сах Цельсия. Опре­де­ли­те по диаграмме, на сколь­ко гра­ду­сов Цель­сия фев­раль был в сред­нем хо­лод­нее июля.

 


Ответ:

3
Задание 3 № 315133

На клет­ча­той бу­ма­ге изоб­ражён круг. Ка­ко­ва пло­щадь круга, если пло­щадь за­штри­хо­ван­но­го сек­то­ра равна 32?


Ответ:

4
Задание 4 № 1016

Максим с папой решил покататься на колесе обозрения. Всего на колесе 30 кабинок, из них 11 – синие, 7 – зеленые, остальные – оранжевые. Кабинки по очереди подходят к платформе для посадки. Найдите вероятность того, что Максим прокатится в оранжевой кабинке.


Ответ:

5
Задание 5 № 26668

Найдите корень уравнения: Если уравнение имеет более одного корня, укажите меньший из них.


Ответ:

6
Задание 6 № 56453

Пло­щадь ромба равна 18. Одна из его диа­го­на­лей в 4 раза боль­ше дру­гой. Най­ди­те мень­шую диа­го­наль.


Ответ:

7
Задание 7 № 520693

На рисунке изображен график y = f '(x) — производной функции f(x), определенной на интервале (−12; 11). Найдите количество точек максимума функции f(x), принадлежащих отрезку [−8; 9].

 


Ответ:

8
Задание 8 № 271571

Найдите расстояние между вершинами и прямоугольного параллелепипеда, для которого


Ответ:

9
Задание 9 № 67181

Найдите , если


Ответ:

10
Задание 10 № 41691

Деталью некоторого прибора является вращающаяся катушка. Она состоит из трeх однородных соосных цилиндров: центрального массой  кг и радиуса  см, и двух боковых с массами  кг и с радиусами При этом момент инерции катушки относительно оси вращения, выражаемый в , даeтся формулой При каком максимальном значении момент инерции катушки не превышает предельного значения ? Ответ выразите в сантиметрах.


Ответ:

11
Задание 11 № 114653

Из пункта A круговой трассы выехал велосипедист, а через 10 минут следом за ним отправился мотоциклист. Через 2 минуты после отправления он догнал велосипедиста в первый раз, а еще через 3 минуты после этого догнал его во второй раз. Найдите скорость мотоциклиста, если длина трассы равна 5 км. Ответ дайте в км/ч.


Ответ:

12
Задание 12 № 126137

Найдите наименьшее значение функции на отрезке


Ответ:

13
Задание 13 № 502053

а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 14 № 513259

Диаметр окружности основания цилиндра равен 20, образующая цилиндра равна 28. Плоскость пересекает его основания по хордам длины 12 и 16. Расстояние между этими хордами равно

а) Докажите, что центры оснований цилиндра лежат по одну сторону от этой плоскости.

б) Найдите угол между этой плоскостью и плоскостью основания цилиндра.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 15 № 511495

Решите неравенство:


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задание 16 № 505501

В тре­уголь­ни­ке АВС про­ве­де­на бис­сек­три­са АМ. Пря­мая, про­хо­дя­щая через вер­ши­ну В пер­пен­ди­ку­ляр­но АМ, пе­ре­се­ка­ет сто­ро­ну АС в точке N. АВ = 6; ВС = 5; АС = 9.

а) до­ка­жи­те, что бис­сек­три­са угла С делит от­ре­зок МN по­по­лам

б) пусть Р — точка пе­ре­се­че­ния бис­сек­трис тре­уголь­ни­ка АВС. Най­ди­те от­но­ше­ние АР : РN.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 17 № 513300

В двух шах­тах до­бы­ва­ют алю­ми­ний и ни­кель. В пер­вой шахте име­ет­ся 60 ра­бо­чих, каж­дый из ко­то­рых готов тру­дить­ся 5 часов в день. При этом один ра­бо­чий за час до­бы­ва­ет 2 кг алю­ми­ния или 3 кг ни­ке­ля. Во вто­рой шахте име­ет­ся 260 ра­бо­чих, каж­дый из ко­то­рых готов тру­дить­ся 5 часов в день. При этом один ра­бо­чий за час до­бы­ва­ет 3 кг алю­ми­ния или 2 кг ни­ке­ля.

Обе шахты по­став­ля­ют до­бы­тый ме­талл на завод, где для нужд про­мыш­лен­но­сти про­из­во­дит­ся сплав алю­ми­ния и ни­ке­ля, в ко­то­ром на 2 кг алю­ми­ния при­хо­дит­ся 1 кг ни­ке­ля. При этом шахты до­го­ва­ри­ва­ют­ся между собой вести до­бы­чу ме­тал­лов так, чтобы завод мог про­из­ве­сти наи­боль­шее ко­ли­че­ство спла­ва. Сколь­ко ки­ло­грам­мов спла­ва при таких усло­ви­ях еже­днев­но смо­жет про­из­ве­сти завод?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Задание 18 № 517504

Най­ди­те все зна­че­ния а, при каж­дом из ко­то­рых си­сте­ма

имеет хотя бы одно ре­ше­ние.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Задание 19 № 514433

Три числа назовем хорошей тройкой, если они могут быть длинами сторон треугольника.

Три числа назовем отличной тройкой, если они могут быть длинами сторон прямоугольного треугольника.

а) Даны 8 различных натуральных чисел. Может ли оказаться. что среди них не найдется ни одной хорошей тройки?

б) Даны 4 различных натуральных числа. Может ли оказаться, что среди них можно найти три отличных тройки?

в) Даны 12 различных чисел (необязательно натуральных). Какое наибольшее количество отличных троек могло оказаться среди них?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения.