СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости




Вариант № 20387584

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 504815

В ма­га­зи­не «Сделай сам» вся ме­бель продаётся в разо­бран­ном виде. По­ку­па­тель может за­ка­зать сбор­ку ме­бе­ли на дому, сто­и­мость ко­то­рой со­став­ля­ет 10% от сто­и­мо­сти куп­лен­ной мебели. Шкаф стоит 3300 рублей. Во сколь­ко руб­лей обойдётся по­куп­ка этого шкафа вме­сте со сборкой?


Ответ:

2
Задание 2 № 503359

На ри­сун­ке жир­ны­ми точ­ка­ми по­ка­за­на цена ни­ке­ля на мо­мент за­кры­тия бир­же­вых тор­гов во все ра­бо­чие дни с 3 по 24 октяб­ря 2002 года. По го­ри­зон­та­ли ука­зы­ва­ют­ся числа месяца, по вер­ти­ка­ли — цена тонны ни­ке­ля в дол­ла­рах США. Для на­гляд­но­сти жир­ные точки на ри­сун­ке со­еди­не­ны линией. Опре­де­ли­те по ри­сун­ку наи­мень­шую цену ни­ке­ля на мо­мент за­кры­тия тор­гов в пе­ри­од с 4 по 16 ок­тяб­ря (в дол­ла­рах США за тонну).


Ответ:

3
Задание 3 № 244996

Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


Ответ:

4
Задание 4 № 286125

На конференцию приехали 6 ученых из Швейцарии, 3 из Болгарии и 6 из Австрии. Каждый из них делает на конференции один доклад. Порядок докладов определяется жеребьёвкой. Найдите вероятность того, что третьим окажется доклад ученого из Болгарии.


Ответ:

5
Задание 5 № 504427

Найдите корень уравнения


Ответ:

6
Задание 6 № 53123

Найдите ра­ди­ус окружности, впи­сан­ной в пра­виль­ный треугольник, вы­со­та которого равна 39.


Ответ:

7
Задание 7 № 8039

На рисунке изображен график производной функции , определенной на интервале Найдите количество точек экстремума функции на отрезке


Ответ:

8
Задание 8 № 245362

Найдите угол прямоугольного параллелепипеда, для которого =5, =4, =4. Дайте ответ в градусах.


Ответ:

9
Задание 9 № 520695

Найдите значение выражения


Ответ:

10
Задание 10 № 28039

После дождя уровень воды в колодце может повыситься. Мальчик измеряет время t падения небольших камешков в колодец и рассчитывает расстояние до воды по формуле , где h — расстояние в метрах, t — время падения в секундах. До дождя время падения камешков составляло 1,2 с. На сколько должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на 0,1 с? Ответ выразите в метрах.


Ответ:

11
Задание 11 № 99587

Компания "Альфа" начала инвестировать средства в перспективную отрасль в 2001 году, имея капитал в размере 5000 долларов. Каждый год, начиная с 2002 года, она получала прибыль, которая составляла 200% от капитала предыдущего года. А компания «Бета» начала инвестировать средства в другую отрасль в 2003 году, имея капитал в размере 10000 долларов, и, начиная с 2004 года, ежегодно получала прибыль, составляющую 400% от капитала предыдущего года. На сколько долларов капитал одной из компаний был больше капитала другой к концу 2006 года, если прибыль из оборота не изымалась?


Ответ:

12
Задание 12 № 26695

Найдите наибольшее значение функции на отрезке


Ответ:

13
Задание 13 № 505236

а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 14 № 511106

В правильной треугольной пирамиде SABC с вершиной S, все рёбра которой равны 4, точка N — середина ребра AC, точка O центр основания пирамиды, точка P делит отрезок SO в отношении 3 : 1, считая от вершины пирамиды.

а) Докажите, что прямая NP перпендикулярна прямой BS.

б) Найдите расстояние от точки B до прямой NP.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 15 № 506148

Решите неравенство


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задание 16 № 511398

На диагонали параллелограмма взяли точку, отличную от её середины. Из неё на все стороны параллелограмма (или их продолжения) опустили перпендикуляры.

а) Докажите, что четырёхугольник, образованный основаниями этих перпендикуляров, является трапецией.

б) Найдите площадь полученной трапеции, если площадь параллелограмма равна 8, а один из его углов равен 45°.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 17 № 514516

Вклад в размере 6 млн рублей планируется открыть на четыре года. В конце каждого года вклад увеличивается на 10% по сравнению с его размером в начале года, а, кроме этого, в начале третьего и четвёртого годов вклад ежегодно пополняется на одну и ту же фиксированную сумму, равную целому числу миллионов рублей. Найдите наименьший возможный размер такой суммы, при котором через четыре года вклад станет не меньше 15 млн рублей.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Задание 18 № 511316

Найдите все зна­че­ния па­ра­мет­ра при каж­дом из ко­то­рых си­сте­ма имеет ровно решений.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Задание 19 № 518964

Восемь экспертов оценивали фильм. Каждый из них выставил оценку — целое число баллов от 0 до 12 включительно. Все эксперты выставил различные оценки. Старый рейтинг фильма — это среднее арифметическое всех оценок экспертов. Новый рейтинг фильма вычисляется следующим образом: отбрасываются наименьшая и наибольшая оценки, и подсчитывается среднее арифметическое шести оставшихся оценок.

а) Может ли разность рейтингов, вычисленных по старой и новой системам оценивания, равняться ?

б) Может ли разность рейтингов, вычисленных по старой и новой системам оценивания, равняться ?

в) Найдите наибольшее возможное значение разности старого и нового рейтингов.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения.