СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости




Вариант № 20074947

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 24455

Для приготовления яблочного варенья на 1 кг яблок нужно 1,2 кг сахара. Сколько килограммовых упаковок сахара нужно купить, чтобы сварить варенье из 14 кг яблок?


Ответ:

2
Задание 2 № 263983

На графике показан процесс разогрева двигателя легкового автомобиля. На оси абсцисс откладывается время в минутах, прошедшее от запуска двигателя, на оси ординат — температура двигателя в градусах Цельсия.

Определите по графику, сколько минут двигатель нагревался до температуры


Ответ:

3
Задание 3 № 5319

Найдите площадь прямоугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


Ответ:

4
Задание 4 № 321277

На борту самолёта 28 кресел расположены рядом с запасными выходами и 16 — за перегородками, разделяющими салоны. Все эти места удобны для пассажира высокого роста. Остальные места неудобны. Пассажир В. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру В. достанется удобное место, если всего в самолёте 400 мест.

 


Ответ:

5
Задание 5 № 514036

Найдите корень уравнения


Ответ:

6
Задание 6 № 52499

Высота правильного треугольника равна 33. Найдите радиус окружности, описанной около этого треугольника.


Ответ:

7
Задание 7 № 27503

На рисунке изображён график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.


Ответ:

8
Задание 8 № 25645

Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).


Ответ:

9
Задание 9 № 68663

Найдите значение выражения


Ответ:

10
Задание 10 № 509116

Небольшой мячик бросают под острым углом α к плоскости горизонтальной поверхности земли. Расстояние, которое пролетает мячик, вычисляется по формуле (м), где v0 = 12 м/с — начальная скорость мячика, а g — ускорение свободного падения (считайте g = 10 м/с2). При каком наименьшем значении угла α (в градусах) мячик перелетит через реку шириной 7,2 м?


Ответ:

11
Задание 11 № 520513

Расстояние между городами A и B равно 798 км. Из города A в город B выехал автомобиль, а через 3 часа следом за ним со скоростью 120 км/ч выехал мотоцикл, догнал автомобиль в городе C и повернул обратно. Когда мотоцикл вернулся в A, автомобиль прибыл в B. Найдите расстояние от A до C. Ответ дайте в километрах.


Ответ:

12
Задание 12 № 510490

Найдите наименьшее значение функции на отрезке


Ответ:

13
Задание 13 № 503252

а) Ре­ши­те урав­не­ние

б) Най­ди­те все корни этого уравнения, при­над­ле­жа­щие про­ме­жут­ку


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 14 № 514513

В правильной треугольной призме ABCA1B1C1 все рёбра равны 8. На рёбрах AA1 и CC1 отмечены точки M и N соответственно, причём AM = 3, CN = 1.

а) Докажите, что плоскость MNB1 разбивает призму на два многогранника, объёмы которых равны.

б) Найдите объём тетраэдра MNBB1.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 15 № 518960

Решите неравенство


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задание 16 № 504439

Точка M — середина стороны AD параллелограмма ABCD . Из вершины A проведены два луча, которые разбивают отрезок BM на три равные части.

а) Докажите, что один из лучей содержит диагональ параллелограмма.

б) Найдите площадь четырёхугольника, ограниченного двумя проведёнными лучами и прямыми BD и BC , если площадь параллелограмма ABCD равна 40.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 17 № 517470

15-го января планируется взять кредит в банке на некоторый срок (целое число месяцев). Условие его выплаты таковы:

− 1-го числа k-ого месяца долго возрастёт на 1% по сравнению с концом предыдущего месяца;

− со 2-го по 14-е число k-того месяца необходимо выплатить часть долга;

− 15-го числа k-того месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.

На сколько месяцев планируется взять кредит, если известно, что общая сумма выплат после полного погашения кредита на 20% больше суммы, взятой в кредит?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Задание 18 № 510023

Найдите все положительные значения a , при каждом из которых система

имеет единственное решение.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Задание 19 № 516386

Будем называть четырёхзначное число очень счастливым, если все цифры в его десятичной записи различны, а сумма первых двух из этих цифр равна сумме последних двух из них. Например, очень счастливым является число 3140.

а) Существуют ли одиннадцать последовательных четырёхзначных чисел, среди которых ровно два очень счастливых?

б) Может ли разность двух очень счастливых четырёхзначных чисел равняться 2017?

в) Найдите наименьшее простое число, для которого не существует кратного ему очень счастливого четырёхзначного числа.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения.