СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Вариант № 20074945

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 505137

В летнем лагере на каждого участника полагается 30 г сахара в день. В лагере 103 человека. Сколько килограммовых упаковок сахара понадобится на весь лагерь на 6 дней?


Ответ:

2
Задание 2 № 263597

На рисунке жирными точками показана среднесуточная температура воздуха в Бресте каждый день с 6 по 19 июля 1981 года. По горизонтали указываются числа месяца, по вертикали — температура в градусах Цельсия. Для наглядности жирные точки соединены линией. Определите по рисунку, какая была температура 15 июля. Ответ дайте в градусах Цельсия.


Ответ:

3
Задание 3 № 5307

На клетчатой бумаге с размером клетки изображён круг. Найдите площадь закрашенного сектора. Ответ дайте в квадратных сантиметрах.


Ответ:

4
Задание 4 № 320171

На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Вписанная окружность», равна 0,2. Вероятность того, что это вопрос по теме «Параллелограмм», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.


Ответ:

5
Задание 5 № 14673

Найдите корень уравнения:


Ответ:

6
Задание 6 № 27775

Угол между бис­сек­три­сой и ме­ди­а­ной пря­мо­уголь­но­го тре­уголь­ни­ка, про­ве­ден­ны­ми из вер­ши­ны пря­мо­го угла, равен 14°. Най­ди­те мень­ший угол этого тре­уголь­ни­ка. Ответ дайте в гра­ду­сах.


Ответ:

7
Задание 7 № 7787

На рисунке изображен график производной функции f(x), определенной на интервале (−10; 3). В какой точке отрезка [−3; 1]  f(x), принимает наименьшее значение?


Ответ:

8
Задание 8 № 27172

Во сколько раз увеличится площадь поверхности пирамиды, если все ее ребра увеличить в 2 раза?


Ответ:

9
Задание 9 № 26827

Найдите значение выражения при


Ответ:

10
Задание 10 № 500914

Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому , где — мощность излучения звезды (в Ваттах), — постоянная, м — площадь поверхности звезды (в квадратных метрах), а — температура (в кельвинах). Известно, что площадь поверхности не-которой звезды равна м, а мощность её излучения равна Вт. Найдите температуру этой звезды в Кельвинах.


Ответ:

11
Задание 11 № 507884

Изюм получается в процессе сушки винограда. Сколько килограммов винограда потребуется для получения 6 килограммов изюма, если виноград содержит 90% воды, а изюм содержит 5% воды?


Ответ:

12
Задание 12 № 128797

Найдите точку максимума функции


Ответ:

13
Задание 13 № 509947

а) Решите уравнение

б) Укажите корни этого уравнения, принадлежащие отрезку


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 14 № 513347

Все рёбра правильной четырёхугольной пирамиды SABCD с вершиной S равны 6. Основание высоты SO этой пирамиды является серединой отрезка SS1, M — середина ребра AS, точка L лежит на ребре BC так, что BL : LC = 1 : 2.

а) Докажите, что сечение пирамиды SABCD плоскостью S1LM — равнобокая трапеция.

б) Вычислите длину средней линии этой трапеции.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 15 № 511515

Решите неравенство:


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задание 16 № 517448

Точка E — се­ре­ди­на бо­ко­вой сто­ро­ны CD тра­пе­ции ABCD. На сто­ро­не AB взяли точку K, так, что пря­мые CK и AE па­рал­лель­ны. От­рез­ки CK и BE пе­ре­се­ка­ют­ся в точке O.

а) До­ка­жи­те, что CO = KO.

б) Найти от­но­ше­ние ос­но­ва­ний тра­пе­ции BC и AD, если пло­щадь тре­уголь­ни­ка BCK со­став­ля­ет пло­ща­ди тра­пе­ции ABCD.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 17 № 510103

15-го ян­ва­ря пла­ни­ру­ет­ся взять кре­дит в банке на 19 ме­ся­цев. Усло­вия его воз­вра­та та­ко­вы:

— 1-го числа каж­до­го ме­ся­ца долг воз­растёт на r% по срав­не­нию с кон­цом преды­ду­ще­го ме­ся­ца;

— со 2-го по 14-е число каж­до­го ме­ся­ца не­об­хо­ди­мо вы­пла­тить часть долга;

— 15-го числа каж­до­го ме­ся­ца долг дол­жен быть на одну и ту же сумму мень­ше долга на 15-е число преды­ду­ще­го ме­ся­ца. Из­вест­но, что общая сумма вы­плат после пол­но­го по­га­ше­ния кре­ди­та на 30% боль­ше суммы, взя­той в кре­дит. Най­ди­те r.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Задание 18 № 507190

Найдите все положительные значения а, при каждом из которых система

имеет единственное решение.

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Задание 19 № 508112

За по­бе­ду в шах­мат­ной пар­тии на­чис­ля­ют 1 очко, за ничью — 0,5 очка, за про­иг­рыш — 0 очков. В тур­ни­ре при­ни­ма­ют уча­стие m маль­чи­ков и d де­во­чек, причём каж­дый иг­ра­ет с каж­дым два­жды.

а) Ка­ко­во наи­боль­шее ко­ли­че­ство очков, ко­то­рое в сумме могли на­брать де­воч­ки, если m = 2, d = 2?

б) Ка­ко­ва сумма на­бран­ных всеми участ­ни­ка­ми очков, если m + d = 10?

в) Ка­ко­вы все воз­мож­ные зна­че­ния d, если из­вест­но, что в сумме маль­чи­ки на­бра­ли ровно в 3 раза боль­ше очков, чем де­воч­ки?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения.