математика
Информатика
Русский язык
Английский язык
Немецкий язык
Французcкий язык
Испанский язык
Физика
Химия
Биология
География
Обществознание
Литература
История
сайты - меню - вход - новости




Вариант № 19848892

Ответом к заданиям 1—12 является целое число или конечная десятичная дробь. Дробную часть от целой отделяйте десятичной запятой. Единицы измерений писать не нужно.


Если ва­ри­ант задан учителем, вы можете вписать ответы на задания части С или загрузить их в систему в одном из графических форматов. Учитель уви­дит ре­зуль­та­ты вы­пол­не­ния заданий части В и смо­жет оце­нить за­гру­жен­ные от­ве­ты к части С. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей статистике.



Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 505111

Установка двух счётчиков воды (холодной и горячей) стоит 2500 рублей. До уста­нов­ки счётчиков Алек­сандр пла­тил за воду (холодную и горячую) еже­ме­сяч­но 1700 руб. После уста­нов­ки счётчиков оказалось, что в сред­нем он рас­хо­ду­ет воды на 1000 руб. при тех же та­ри­фах на воду. За какое наи­мень­шее ко­ли­че­ство ме­ся­цев при тех же та­ри­фах на воду уста­нов­ка счётчиков окупится?


Ответ:

2
Задание 2 № 26872

На рисунке жирными точками показана цена нефти на момент закрытия биржевых торгов во все рабочие дни с 17 по 31 августа 2004 года. По горизонтали указываются числа месяца, по вертикали — цена барреля нефти в долларах США. Для наглядности жирные точки на рисунке соединены линией. Определите по рисунку наименьшую цену нефти на момент закрытия торгов в указанный период (в долларах США за баррель).

 


Ответ:

3
Задание 3 № 248703

Найдите площадь прямоугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


Ответ:

4
Задание 4 № 286359

В сборнике билетов по истории всего 20 билетов, в 10 из них встречается вопрос по теме "Александр Второй". Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по теме "Александр Второй".


Ответ:

5
Задание 5 № 100259

Решите уравнение


Ответ:

6
Задание 6 № 53471

Острый угол ромба равен 30°. Радиус вписанной в этот ромб окружности равен 9. Найдите сторону ромба.


Ответ:

7
Задание 7 № 27485

Прямая параллельна касательной к графику функции Найдите абсциссу точки касания.

 


Ответ:

8
Задание 8 № 270143

Правильная четырехугольная призма описана около цилиндра, радиус основания которого равен 6. Площадь боковой поверхности призмы равна 48. Найдите высоту цилиндра.


Ответ:

9
Задание 9 № 26862

Найдите значение выражения


Ответ:

10
Задание 10 № 519511

Для получения на экране увеличенного изображения лампочки в лаборатории используется собирающая линза с главным фокусным расстоянием см. Расстояние от линзы до лампочки может изменяться в пределах от 50 до 70 см, а расстояние от линзы до экрана – в пределах от 200 до 270 см. Изображение на экране будет чётким, если выполнено соотношение Укажите, на каком наименьшем расстоянии от линзы можно поместить лампочку, чтобы еe изображение на экране было чeтким. Ответ выразите в сантиметрах.


Ответ:

11
Задание 11 № 503316

Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 128 км. На следующий день он отправился обратно в А со скоростью на 8 км/ч больше прежней. По дороге он сделал остановку на 8 часов. В результате велосипедист затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из В в А. Ответ дайте в км/ч.


Ответ:

12
Задание 12 № 3457

Найдите наибольшее значение функции на отрезке


Ответ:

13
Задание 13 № 485996

а) Решите уравнение

б) Укажите корни уравнения, принадлежащие отрезку


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 14 № 517561

Дана четырёхугольная пирамида SABCD с прямоугольником ABCD в основании. Сторона AB равна , а BC равна 6. Вершина пирамиды проецируется в точку пересечения диагоналей прямоугольника. Из вершин A и C на ребро SB опущены перпендикуляры AP и CQ.

а) Докажите, что точка P является серединой отрезка BQ.

б) Найдите угол между плоскостями SBA и SBC, если ребро SD равно 9.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 15 № 513367

Решите неравенство


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задание 16 № 509182

В остроугольном треугольнике ABC провели высоту BH. Из точки H на стороны AB и BC отпустили перпендикуляры HK и HM соответственно.

а) Докажите, что треугольник MBK подобен треугольнику ABC.

б) Найдите отношение площади треугольника MBK к площади четырёхугольника AKMC, если BH = 3, а радиус окружности, описанной около треугольника ABC, равен 2.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 17 № 520825

15-го декабря планируется взять кредит в банке на сумму 300 тысяч рублей на 21 месяц. Условия возврата таковы:

— 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца с 1-го по 20-й долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца;

— 15-го числа 20-го месяца долг составит 100 тысяч рублей;

— к 15-му числу 21-го месяца кредит должен быть полностью погашен.

Найдите общую сумму выплат после полного погашения кредита.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Задание 18 № 517504

Найдите все значения а, при каждом из которых система

имеет хотя бы одно решение.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Задание 19 № 504855

Коля множил некоторое натуральное число на соседнее натуральное число, и получил произведение, равное m. Вова умножил некоторое четное натуральное число на соседнее четное натуральное число и получил произведение, равное n.

а) Может ли модуль разности чисел m и n равняться 6?

б) Может ли модуль разности чисел m и n равняться 13?

в) Какие значения может принимать модуль разности чисел m и n?


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения; если работа задана учителем, она будет ему отправлена.