математика
Информатика
Русский язык
Английский язык
Немецкий язык
Французcкий язык
Испанский язык
Физика
Химия
Биология
География
Обществознание
Литература
История
сайты - меню - вход - новости




Вариант № 19724510

Ответом к заданиям 1—12 является целое число или конечная десятичная дробь. Дробную часть от целой отделяйте десятичной запятой. Единицы измерений писать не нужно.


Если ва­ри­ант задан учителем, вы можете вписать ответы на задания части С или загрузить их в систему в одном из графических форматов. Учитель уви­дит ре­зуль­та­ты вы­пол­не­ния заданий части В и смо­жет оце­нить за­гру­жен­ные от­ве­ты к части С. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей статистике.



Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 314867

В квартире, где проживает Алексей, установлен прибор учёта расхода холодной воды (счётчик). 1 сентября счётчик показывал расход 103 куб. м воды, а 1 октября — 114 куб. м. Какую сумму должен заплатить Алексей за холодную воду за сентябрь, если цена 1 куб. м холодной воды составляет 19 руб. 20 коп.? Ответ дайте в рублях.


Ответ:

2
Задание 2 № 27527

На рисунке жирными точками показано суточное количество осадков, выпадавших в Мурманске с 7 по 22 ноября 1995 года. По горизонтали указываются числа месяца, по вертикали — количество осадков, выпавших в соответствующий день, в миллиметрах. Для наглядности жирные точки на рисунке соединены линией. Определите по рисунку, сколько дней из данного периода выпадало менее 3 миллиметров осадков.

 


Ответ:

3
Задание 3 № 250915

На клетчатой бумаге с размером клетки изображён круг. Найдите площадь закрашенного сектора. Ответ дайте в квадратных сантиметрах.


Ответ:

4
Задание 4 № 500999

В кармане у Пети было 4 монеты по рублю и 2 монеты по два рубля. Петя, не глядя, переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что обе двухрублёвые монеты лежат в одном кармане.


Ответ:

5
Задание 5 № 504231

Найдите корень уравнения


Ответ:

6
Задание 6 № 52549

Радиус окружности, описанной около правильного треугольника, равен 2. Найдите высоту этого треугольника.


Ответ:

7
Задание 7 № 504233

На ри­сун­ке изображён гра­фик про­из­вод­ной y = f'(x) функ­ции y = f(x), определённой на ин­тер­ва­ле (−4; 8). В какой точке от­рез­ка [−3; 1] функ­ция y = f(x) при­ни­ма­ет наи­мень­шее значение?

 


Ответ:

8
Задание 8 № 76553

Во сколь­ко раз уве­ли­чит­ся пло­щадь по­верх­но­сти пирамиды, если все ее ребра уве­ли­чить в 40 раз?


Ответ:

9
Задание 9 № 61693

Найдите значение выражения


Ответ:

10
Задание 10 № 513881

Груз массой 0,8 кг колеблется на пружине. Его скорость v меняется по закону где t — время с момента начала колебаний, T = 16 с — период колебаний, м/с. Кинетическая энергия E (в джоулях) груза вычисляется по формуле где m — масса груза в килограммах, v — скорость груза в м/с. Найдите кинетическую энергию груза через 10 секунд после начала колебаний. Ответ дайте в джоулях.


Ответ:

11
Задание 11 № 111357

Турист идет из одного города в другой, каждый день проходя больше, чем в предыдущий день, на одно и то же расстояние. Известно, что за первый день турист прошел 11 километров. Определите, сколько километров прошел турист за третий день, если весь путь он прошел за 6 дней, а расстояние между городами составляет 81 километр.


Ответ:

12
Задание 12 № 127235

Найдите точку минимума функции


Ответ:

13
Задание 13 № 510671

а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 14 № 514655

В основании прямой треугольной призмы ABCA1B1C1 лежит прямоугольный треугольник ABC с прямым углом C, AC = 4, BC = 16, Точка Q — середина ребра A1B1, а точка P делит ребро B1C1 в отношении 1 : 2, считая от вершины C1. Плоскость APQ пересекает ребро CC1 в точке M.

а) Докажите, что точка M является серединой ребра CC1.

б) Найдите расстояние от точки A1 до плоскости APQ.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 15 № 508361

Решите неравенство:


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задание 16 № 514717

На отрезке BD взята точка C. Биссектриса BL равнобедренного треугольника ABC с основанием BC является боковой стороной равнобедренного треугольника BLD с основанием BD.

а) Докажите, что треугольник DCL равнобедренный.

б) Известно, что В каком отношении прямая DL делит сторону AB?


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 17 № 508629

Известно, что вклад, находящийся в банке с начала года, возрастает к концу года на определенный процент, свой для каждого банка. В начале года Степан положил 60% некоторой суммы денег в первый банк, а оставшуюся часть суммы во второй банк. К концу года сумма этих вкладов стала равна 590 000 руб., а к концу следующего года 701 000 руб. Если бы Степан первоначально положил 60% своей суммы во второй банк, а оставшуюся часть в первый, то по истечении одного года сумма вкладов стала бы равной 610 000 руб. Какова была бы сумма вкладов в этом случае к концу второго года?


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Задание 18 № 514740

Найдите все значения a, при каждом из которых система уравнений

имеет ровно три различных решения.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Задание 19 № 512893

Натуральные числа a, b, c и d удовлетворяют условию a > b > c > d.

а) Найдите числа a, b, c и d, если a + b + с + d = 15 и a2b2 + с2d2 = 19.

б) Может ли быть a + b + с + d = 23 и a2b2 + с2d2 = 23?

в) Пусть a + b + с + d = 1200 и a2b2 + с2d2 = 1200. Найдите количество возможных значений числа a.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения; если работа задана учителем, она будет ему отправлена.