математика
Информатика
Русский язык
Английский язык
Немецкий язык
Французcкий язык
Испанский язык
Физика
Химия
Биология
География
Обществознание
Литература
История
сайты - меню - вход - новости




Вариант № 19724508

Ответом к заданиям 1—12 является целое число или конечная десятичная дробь. Дробную часть от целой отделяйте десятичной запятой. Единицы измерений писать не нужно.


Если ва­ри­ант задан учителем, вы можете вписать ответы на задания части С или загрузить их в систему в одном из графических форматов. Учитель уви­дит ре­зуль­та­ты вы­пол­не­ния заданий части В и смо­жет оце­нить за­гру­жен­ные от­ве­ты к части С. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей статистике.



Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 26631

В городе N живет 200 000 жителей. Среди них 15% детей и подростков. Среди взрослых жителей 45% не работает (пенсионеры, студенты, домохозяйки и т. п.). Сколько взрослых жителей работает?

 


Ответ:

2
Задание 2 № 263901

Когда самолет находится в горизонтальном полете, подъемная сила, действующая на крылья, зависит только от скорости. На рисунке изображена эта зависимость для некоторого самолета. На оси абсцисс откладывается скорость (в километрах в час), на оси ординат – сила (в тоннах силы). В некоторый момент подъемная сила равнялась одной тонне силы. Определите по рисунку, на сколько километров в час надо увеличить скорость, чтобы подъемная сила увеличилась до 4 тонн силы?


Ответ:

3
Задание 3 № 250907

На клетчатой бумаге с размером клетки изображён круг. Найдите площадь закрашенного сектора. Ответ дайте в квадратных сантиметрах.


Ответ:

4
Задание 4 № 502129

В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел не выпадет ни разу.


Ответ:

5
Задание 5 № 101381

Решите уравнение Если уравнение имеет более одного корня, в ответе запишите больший из корней.


Ответ:

6
Задание 6 № 51839

Четырехугольник ABCD вписан в окружность. Угол ABC равен 120°, угол ABD равен 43°. Найдите угол CAD. Ответ дайте в градусах.


Ответ:

7
Задание 7 № 505166

На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.


Ответ:

8
Задание 8 № 72917

Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 3 и 4, и боковым ребром, равным 3.


Ответ:

9
Задание 9 № 84979

 

Найдите значение выражения при


Ответ:

10
Задание 10 № 28531

Деталью некоторого прибора является квадратная рамка с намотанным на неe проводом, через который пропущен постоянный ток. Рамка помещена в однородное магнитное поле так, что она может вращаться. Момент силы Ампера, стремящейся повернуть рамку, (в Нм) определяется формулой , где  — сила тока в рамке,  Тл — значение индукции магнитного поля,  м — размер рамки,  — число витков провода в рамке,  — острый угол между перпендикуляром к рамке и вектором индукции. При каком наименьшем значении угла (в градусах) рамка может начать вращаться, если для этого нужно, чтобы раскручивающий момент M был не меньше 0,9 Нм?


Ответ:

11
Задание 11 № 502311

Клиент А. сделал вклад в банке в размере 6200 рублей. Проценты по вкладу начисляются раз в год и прибавляются к текущей сумме вклада. Ровно через год на тех же условиях такой же вклад в том же банке сделал Б. Ещё ровно через год клиенты А. и Б. закрыли вклады и забрали все накопившиеся деньги. При этом клиент А. получил на 682 рубля больше клиента Б. Какой процент годовых начислял банк по этим вкладам?


Ответ:

12
Задание 12 № 129247

Найдите наименьшее значение функции на отрезке


Ответ:

13
Задание 13 № 511348

а) Ре­ши­те урав­не­ние

б) Найдите все корни этого уравнения, при­над­ле­жа­щие про­ме­жут­ку


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 14 № 517558

Дана четырёхугольная пирамида SABCD с прямоугольником ABCD в основании. Сторона AB равна 4, а BC равна Вершина пирамиды S проектируется в центр пересечения диагоналей прямоугольника. Из вершины A и C на ребро SB опущены перпендикуляры AP и CQ.

а) Докажите, что точка P является серединой отрезка BQ.

б) Найдите угол между плоскостями SBA и SBC, если ребро SD равно 8.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 15 № 515745

Решите неравенство


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задание 16 № 517533

Две окружности касаются внутренним образом в точке A, причем меньшая окружность проходит через через центр O большей. Диаметр BC большей окружности вторично пересекает меньшую окружность в точке M, отличной от A. Лучи AO и AM вторично пересекают большую окружность в точках P и Q соответственно. Точка C лежит на дуге AQ большей окружности, не содержащей точку P.

а) Докажите, что прямые PQ и BC параллельны.

б) Известно, что sinAOC = Прямые PC и AQ пересекаются в точке K. Найдите отношение QK:KA.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 17 № 515690

Тимофей хочет взять в кредит 1,1 млн рублей. Погашение кредита происходит раз в год равными суммами (кроме, может быть, последней) после начисления процентов. Ставка процента 10% годовых. На какое минимальное количество лет может Тимофей взять кредит, чтобы ежегодные выплаты были не большее 270 тысяч рублей?


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Задание 18 № 511510

Найдите все такие значения параметра a, при каждом из которых уравнение не имеет решений.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Задание 19 № 509069

В игре «Дротики» есть 20 наружных секторов, пронумерованных от 1 до 20 и два центральных сектора. При попадании в наружный сектор игрок получает количество очков, совпадающее с номером сектора, а за попадание в центральные сектора он получает 25 или 50 очков соответственно. В каждом из наружных секторов есть области удвоения и утроения, которые, соответственно, удваивают или утраивают номинал сектора. Так, например, попадание в сектор 10 (не в зоны удвоения и утроения) дает 10 очков, в зону удвоения сектора ― 20 очков, в зону утроения ― 30 очков.

а) Может ли игрок тремя бросками набрать ровно 161 очко?

б) Может ли игрок четырьмя бросками набрать ровно 235 очков?

в) С помощью какого наименьшего количества бросков, игрок может набрать ровно 947 очков?


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения; если работа задана учителем, она будет ему отправлена.