При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
Вариант составлен по шаблону 11847187.
В правильной треугольной пирамиде SABC сторона основания AB равна 4, а боковое ребро SA равно 5. Точки M и N — середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды.
а) Докажите, что плоскость α делит медиану CE основания в отношении 5 : 1, считая от точки C.
б) Найдите площадь многоугольника, являющегося сечением пирамиды SABC плоскостью α.
На следующей странице вам будет предложено проверить их самостоятельно.
В основании пирамиды SABCD лежит прямоугольник ABCD со стороной AB = 5 и диагональю BD = 9. Все боковые рёбра пирамиды равны 5. На диагонали BD основания ABCD отмечена точка E, а на ребре AS — точка F так, что SF = BE = 4.
а) Докажите, что плоскость CEF параллельна ребру SB.
б) Плоскость CEF пересекает ребро SD в точке Q. Найдите расстояние от точки Q до плоскости ABC.
На следующей странице вам будет предложено проверить их самостоятельно.
а) Дан прямоугольный параллелепипед Докажите, что все грани тетраэдра
— равные треугольники (тетраэдр, обладающий таким свойством, называют равногранным).
б) В прямоугольном параллелепипеде ABCDA1B1C1D1 найдите угол между плоскостью AA1C и прямой A1B, если AA1 = 3, AB = 4, BC = 4.
На следующей странице вам будет предложено проверить их самостоятельно.
В правильной четырёхугольной пирамиде SABCD с вершиной S сторона основания равна 4. Точка L — середина ребра SC. Тангенс угла между прямыми BL и SA равен
а) Пусть O — центр основания пирамиды. Докажите, что прямые BO и LO перпендикулярны.
б) Найдите площадь поверхности пирамиды.
На следующей странице вам будет предложено проверить их самостоятельно.
В правильной треугольной призме ABCA1B1C1 сторона основания а боковое ребро AA1 = 8.
а) Докажите, что плоскость BCA1 перпендикулярна плоскости проходящей через ребро AA1 и середину ребра B1C1.
б) Найдите тангенс угла между плоскостями BCA1 и BB1C1.
На следующей странице вам будет предложено проверить их самостоятельно.