Окружности и четырёхугольники
Пройти тестирование по 10 заданиям
Пройти тестирование по всем заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
Окружность с центром O, расположенном внутри прямоугольной трапеции ABCD, проходит через вершины B и C большей боковой стороны этой трапеции и касается боковой стороны AD в точке T.
а) Докажите, что угол BOC вдвое больше угла BTC.
б) Найдите расстояние от точки T до прямой BC, если основания трапеции AB и CD равны 4 и 9 соответственно.
Дана равнобедренная трапеция KLMN с основаниями KN и LM. Окружность с центром O, построенная на боковой стороне KL как на диаметре, касается боковой стороны MN и второй раз пересекает большее основание KN в точке H, точка Q — середина MN.
а) Докажите, что четырёхугольник NQOH — параллелограмм.
б) Найдите KN, если ∠LKN = 75° и LM = 1.
Дана равнобедренная трапеция KLMN с основаниями KN и LM. Окружность с центром O, построенная на боковой стороне KL как на диаметре, касается боковой стороны MN и второй раз пересекает большее основание KN в точке H, точка Q — середина MN.
а) Докажите, что четырёхугольник NQOH — параллелограмм.
б) Найдите KN, если ∠LKN = 75° и LM = 2.
Сторона CD прямоугольника ABCD касается некоторой окружности в точке M. Продолжение стороны AD пересекает окружность в точках P и Q, причём точка P лежит между точками D и Q. Прямая BC касается окружности, а точка Q лежит на прямой BM.
а) Докажите, что ∠DMP = ∠CBM.
б) Известно, что CM = 17 и CD = 32. Найдите сторону AD.
Отрезок, соединяющий середины M и N оснований BC и AD соответственно трапеции ABCD, разбивает её на две трапеции, в каждую из которых можно вписать окружность.
а) Докажите, что трапеция ABCD равнобедренная.
б) Известно, что радиус этих окружностей равен 3, а меньшее основание BC исходной трапеции равно 8. Найдите радиус окружности, касающейся боковой стороны AB, основания AN трапеции ABMN и вписанной в неё окружности.
Пройти тестирование по этим заданиям
Есть гораздо более простое решение, см. задачу 340855 из Решу ОГЭ. Там такая задача решается через подобие и косинус угла С.
Спасибо, привели другое решение.
Можно немного проще. Опустим высоту TH из T на BC. Пары треугольников THC, ABT и BTH, TDC подобны по двум углам. Тогда TC:TH=TB:4 и TB:TH=TC:9. Перемножая их, получим: TH^2=36 или TH=6.
Спасибо, привели другое решение.