Комбинации фигур
Пройти тестирование по 10 заданиям
Пройти тестирование по всем заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
В окружность вписан четырехугольник ABCD, диагонали которого взаимно перпендикулярны и пересекаются в точке E. Прямая, проходящая через точку E и перпендикулярная к AB, пересекает сторону CD в точке M. Известно, что AD = 8, AB = 4, угол CDB равен 60 градусов.
а) Докажите, что EM — медиана треугольника CED.
б) Найдите длину EM.
В треугольнике ABC угол В прямой, точка М лежит на стороне АС, причем Величина угла АВМ равна 60 градусам, BM = 8.
а) Найдите величину угла ВАС;
б) Найдите расстояние между центрами окружностей, описанных вокруг треугольников ВСМ и ВАМ.
В треугольнике ABC точка O — центр описанной окружности, точка R лежит на отрезке BC и BR = RC. Описанная около треугольника BRO окружность пересекает AB в точке T.
а) Докажите, что TR || AC.
б) Найдите площадь треугольника ABC, если известно, что угол BOR равен 30°, RT = 8, BT = 6.
В окружность вписан четырехугольник ABCD, диагонали которого взаимно перпендикулярны и пересекаются в точке E. Прямая, проходящая через точку E и перпендикулярная к AB, пересекает сторону CD в точке M.
а) Докажите, что EM — медиана треугольника CED.
б) Найдите EM, если AD = 8, AB = 4 и угол CDB равен 60°.
Дан квадрат ABCD со стороной 7. На сторонах BC и CD даны точки M и N такие, что периметр треугольника CMN равен 14.
а) Докажите, что B и D — точки касания вневписанной окружности треугольника CMN, а ее центр находится в вершине A квадрата ABCD.
б) Найдите угол MAN.
Пройти тестирование по этим заданиям