Треугольники
Пройти тестирование по 10 заданиям
Пройти тестирование по всем заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
Биссектриса CD угла ACB при основании равнобедренного треугольника ABC (AB = AC) делит сторону AB так, что AD = BC = 2.
а) Докажите, что CD = BC.
б) Найдите площадь треугольника ABC.
Площадь треугольника АВС равна 12. На прямой АС взята точка D так, что точка С является серединой отрезка AD. Точка K — середина стороны AB, прямая KD пересекает сторону BC в точке L.
a) Докажите, что BL : LC = 2 : 1.
б) Найдите площадь треугольника BLK.
Точка D делит сторону AC в отношении AD : DC = 1 : 2.
а) Докажите, что в треугольнике ABD найдётся медиана, равная одной из медиан треугольника DBC.
б) Найдите длину этой медианы в случае, если AB = 7, BC = 8, и AC = 9.
На сторонах AB, BC и CA треугольника ABC отложены соответственно отрезки
а) Докажите, что где
б) Найдите, какую часть от площади треугольника ABC составляет площадь треугольника MNK.
В прямоугольном треугольнике ABC с прямым углом C проведена высота CD. Радиусы окружностей, вписанных в треугольники ACD и BCD, равны 0,6 и 0,8.
а) Докажите подобие треугольников ACD и BCD, ACD и ABC.
б) Найдите радиус окружности, вписанной в треугольник ABC.
Пройти тестирование по этим заданиям