Объёмы многогранников
Пройти тестирование по 10 заданиям
Пройти тестирование по всем заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
В правильной треугольной пирамиде SABC сторона основания AB равна 12, а боковое ребро SA равно 8. Точки M и N — середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды.
а) Докажите, что плоскость α делит медиану CE основания в отношении 5 : 1, считая от точки C.
б) Найдите объём пирамиды, вершиной которой является точка C, а основанием — сечение пирамиды SABC плоскостью α.
В пирамиде SABC в основании лежит правильный треугольник ABC со стороной
Точка O — основание высоты пирамиды, проведённой из вершины S.
а) Докажите, что точка O лежит вне треугольника ABC.
б) Найдите объём четырёхугольной пирамиды SABCO.
В правильной четырёхугольной пирамиде SABCD с вершиной S сторона основания равна 8. Точка L — середина ребра SC. Тангенс угла между прямыми BL и SA равен
а) Пусть O — центр основания пирамиды. Докажите, что прямые BO и LO перпендикулярны.
б) Найдите площадь поверхности пирамиды.
В треугольной пирамиде ABCD двугранные углы при рёбрах AD и BC равны. AB = BD = DC = AC = 5.
а) Докажите, что AD = BC.
б) Найдите объем пирамиды, если двугранные углы при AD и BC равны 60°.
В правильной треугольной призме ABCA1B1C1 все рёбра равны 6. На рёбрах AA1 и CC1 отмечены точки M и N соответственно, причём AM = 2, CN = 1.
а) Докажите, что плоскость MNB1 разбивает призму на два многогранника, объёмы которых равны.
б) Найдите объём тетраэдра MNBB1.
Пройти тестирование по этим заданиям
как определили что высота треугольника А1В1С1 и высота призмы В1А1С1NM равны 3sqrt3?
Высота в правильном треугольнике со стороной 6