СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Поиск
'



Всего: 109    1–20 | 21–40 | 41–60 | 61–80

Добавить в вариант

Задания Д7 C2 № 505931

Диагональ куба служит ребром двугранного угла, грани которого проходят через вершины и Найдите величину этого угла.

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 15.
Раздел кодификатора ФИПИ/Решу ЕГЭ: Куб, Метод координат, Угол между плоскостями

Задание 14 № 509202

В кубе ABCDA1B1C1D1 все рёбра равны 4. На его ребре BB1 отмечена точка K так, что KB = 3. Через точки K и C1 построена плоскость α, параллельная прямой BD1.

а) Докажите, что A1P : PB1 = 2 : 1, где P — точка пересечения плоскости α с ребром A1B1.

б) Найдите угол наклона плоскости α к плоскости грани BB1C1C.


Аналоги к заданию № 509202: 514243 Все

Источник: ЕГЭ по ма­те­ма­ти­ке — 2015. До­сроч­ная волна, Запад.

Задания Д6 C2 № 485981

Основание прямой четырехугольной призмы ABCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 12, AD = 5. Найдите угол между плоскостью основания призмы и плоскостью, проходящей через середину ребра AD перпендикулярно прямой BD1, если расстояние между прямыми AC и B1D1 равно 13.


Аналоги к заданию № 485981: 485997 511327 Все

Решение · ·

Задание 14 № 513259

Диаметр окружности основания цилиндра равен 20, образующая цилиндра равна 28. Плоскость пересекает его основания по хордам длины 12 и 16. Расстояние между этими хордами равно

а) Докажите, что центры оснований цилиндра лежат по одну сторону от этой плоскости.

б) Найдите угол между этой плоскостью и плоскостью основания цилиндра.


Аналоги к заданию № 513259: 514721 Все

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2016

Задание 14 № 516799

Сечением прямоугольного параллелепипеда ABCDA1B1C1D1 плоскостью α содержащей прямую BD1 и параллельной прямой AC, является ромб.

а) Докажите, что грань ABCD — квадрат.

б) Найдите угол между плоскостями α и BCC1, если AA1 = 6, AB = 4.

Источник: ЕГЭ по математике 31.03.2017. Досрочная волна.

Задания Д7 C2 № 505839

В правильной треугольной призме все ребра которой равны, точка — середина Найдите угол между плоскостью и плоскостью где — середина

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 1.

Задания Д7 C2 № 511259

В правильной четырехугольной пирамиде PABCD все ребра равны между собой. На ребре PC отмечена точка K.

а) Докажите, что сечение пирамиды плоскостью ABK является трапецией.

б) Найдите угол, который образует плоскость ABK с плоскостью основания пирамиды, если известно, что PK : KC = 3 : 1.

Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 128.

Задание 14 № 513264

Дан куб ABCDA1B1C1D1.

а) Докажите, что прямая BD1 перпендикулярна плоскости ACB1.

б) Найдите угол между плоскостями AD1C1 и A1D1C.


Аналоги к заданию № 513264: 513273 Все

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2016

Задания Д7 C2 № 508149

В правильной четырехугольной пирамиде PABCD высота PO равна а сторона основания равна 6. Из точки О на ребро PC опущен перпендикуляр ОН. Докажите, что прямая PC перпендикулярна прямой DH. Найдите угол между плоскостями, содержащими две соседние боковые грани.

Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 95.

Задания Д7 C2 № 515135

Дана правильная треугольная призма ABCA1B1C1.

А) Докажите, что прямая B1C1 перпендикулярна линии пересечения плоскостей ABC1 и АСВ1

Б) Найдите угол между плоскостями ABC1 и ACB1, если известно, что AB = 2, AA1 = 2.

Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 169.

Задания Д7 C2 № 508122

На боковых ребрах правильной треугольной призмы расположены точки и М соответственно. Известно, что угол между прямыми и АВ равен а угол между прямым КМ и АС –

а) Постройте плоскость, проходящую через точки и М.

б) Найдите угол между этой плоскостью и плоскостью основания АВС.

Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 91.

Задания Д7 C2 № 512670

В правильной треугольной призме ABCA1B1C1 все ребра равны между собой. Через центр верхнего основания призмы и середины двух ребер нижнего основания проведена плоскость β.

а) Найдите угол, который образует плоскость β с плоскостью ABC.             

б) Найдите площадь сечения призмы ABCA1B1C1 плоскостью β, если известно, что ребро призмы равно 6.

Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 141.

Задания Д7 C2 № 513233

Треугольная призма ABCA1B1C1 с нижним основанием ABC и боковыми ребрами AA1, BB1, CC1 рассечена плоскостью, проходящей через точки E, F, C, где точка E является серединой ребра AA1, точка F лежит на ребре BB1, причем BF : FB1 = 1 : 2. 

а) Докажите, что объем части призмы ABCA1B1C 1, заключенный между секущей плоскостью и нижним основанием этой призмы составляет  объема призмы.

б) Найдите угол между нижним основанием призмы и плоскостью сечения, если призма ABCA1B1C1 — правильная и все ее ребра равны между собой.

Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 146.

Задания Д7 C2 № 505919

В правильной шестиугольной призме все ребра равны Найдите угол между плоскостями и

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 13.

Задания Д7 C2 № 515725

В прямоугольном параллелепипеде ABCDA1B1C1D1 известны длины рёбер AA1 = 7, AB = 16, AD = 6. Точка K — середина ребра C1D1.

а) Докажите, что плоскость, проходящая через точку B перпендикулярно прямой AK, пересекает отрезок A1K.

б) Найдите тангенс угла между этой плоскостью и плоскостью ABC.

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2017. Вариант 5. (Часть C).

Задания Д7 C2 № 511837

Основанием прямой призмы ABCA1B1C1 является равнобедренный треугольник ABC, в котором CB = CA = 5, BA = 6. Высота призмы равна 10. Точка M — середина ребра AA1.

А) Постройте прямую, по которой пересекаются плоскости MBC1 и ABC.

Б) Вычислите угол между плоскостями MBC1 и ABC.

Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 113.

Задания Д7 C2 № 513219

В правильной треугольной пирамиде PABC (P — вершина) точка K – середина AB, точка M — середина BC, точка N лежит на ребре АР, причем АN : NP = 1 : 3. 

а) Докажите, что  сечением пирамиды плоскостью, проходящей через точки NKM, является равнобедренная трапеция. 

б) Найдите угол между плоскостями NKM и ABC, если известно, что AB = 6, АР = 8.

Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 144.

Задания Д7 C2 № 515763

В правильной треугольной пирамиде SABC с вершиной S, все рёбра которой равны 2, точка M — середина ребра AB, точка O — центр основания пирамиды, точка F делит отрезок SO в отношении 3 : 1, считая от вершины пирамиды.

а) Докажите, что прямая MF перпендикулярна прямой SC.

б) Найдите угол между плоскостью MBF и плоскостью ABC.

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2017. Вариант 7. (Часть C).

Задание 14 № 518912

В правильной треугольной пирамиде SABC с основанием ABC боковое ребро равно 7, а сторона основания равна 6. На продолжении ребра SA за точку A отмечена точка P, а на продолжении ребра SB за точку B — точка Q, причём AP = BQ = SA.

а) Докажите, что прямые PQ и SC перпендикулярны друг другу.

б) Найдите угол между плоскостями ABC и CPQ.


Аналоги к заданию № 518912: 518959 Все


Задания Д7 C2 № 511217

Дана правильная шестиугольная призма ABCDEFA1B1C1D1E1F1. Через точки B, D1, F1 проведена плоскость β.

а) Докажите, что плоскость β пересекает ребро AA1 в такой точке M, что AM : A1M = 1 : 2.

б) Найдите угол, который образует плоскость β с плоскостью основания призмы, если известно, что AB = 1, AA1 = 3.

Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 122.
Всего: 109    1–20 | 21–40 | 41–60 | 61–80