Всего: 650 1–20 | 21–40 | 41–60 | 61–80 …
Добавить в вариант
Окружность с центром O, вписанная в треугольник ABC, касается стороны BC в точке P и пересекает отрезок BO в точке Q. При этом отрезки OC и QP параллельны.
а) Докажите, что треугольник ABC ― равнобедренный.
б) Найдите площадь треугольника BQP, если точка O делит высоту BD треугольника в отношении BO : OD = 3 : 1 и AC = 2a.
Точки D и E — основания высот непрямоугольного треугольника ABC, проведённых из вершин A и C соответсвенно. Известно, что BC = a и AB = b. Найдите сторону AC, если известно, что: а) треугольник остроугольный, б) угол B тупой.
Точки A1, B1 и C1 — середины сторон соответственно BC, AC и AB остроугольного треугольника ABC.
а) Докажите, что отличная от A1 точка пересечения окружностей, описанных около треугольников A1CB1 и A1BC1, лежит на окружности, описанной около треугольника B1AC1.
б) Известно, что AB = AC = 10 и BC = 12. Найдите радиус окружности, вписанной в треугольник, вершинами которого являются центры окружностей, описанных около треугольников A1CB1, A1BC1 и B1AC1.
Точки A1, B1 и C1 — середины сторон соответственно BC, AC и AB треугольника ABC, в котором угол A тупой.
а) Докажите, что отличная от A1 точка пересечения окружностей, описанных около треугольников A1CB1 и A1BC1, лежат на окружности, описанной около треугольника B1AC1.
б) Известно, что AB = AC = 13 и BC = 24. Найдите радиус окружности, вписанной в треугольник, вершинами которого являются центры окружностей, описанных около треугольников A1CB1, A1BC1 и B1AC1.
Дан треугольник ABC со сторонами AB = 15, AC = 9 и BC = 12. На стороне BC взята точка D, а на отрезке AD — точка O, причем CD = 4 и AO = 3OD. Окружность с центром O проходит через точку C. Найдите расстояние от точки C до точки пересечения этой окружности с прямой AB.
В треугольнике ABC известны стороны: AB = 7, BC = 8, AC = 9. Окружность, проходящая через точки A и C, пересекает прямые BA и BC соответственно в точках K и L, отличных от вершин треугольника. Отрезок KL касается окружности, вписанной в треугольник ABC. Найдите длину отрезка KL.
В треугольнике ABC известны стороны: AB = 5, BC = 6, AC = 7. Окружность, проходящая через точки A и C, пересекает прямые AB и BC соответственно в точках K и L, отличных от вершин треугольника. Отрезок KL касается окружности, вписанной в треугольник ABC. Найдите длину отрезка KL.
В треугольной пирамиде MABC основанием является правильный треугольник ABC, ребро MB перпендикулярно плоскости основания, стороны основания равны 3, а ребро MA = 6. На ребре AC находится точка D, на ребре AB точка E, а на ребре AM — точка L. Известно, что AD = AL = 2, и BE = 1. Найдите площадь сечения пирамиды плоскостью, проходящей через точки E, D и L.
Дан треугольник ABC со сторонами AB = 13, AC = 5 и BC = 12. На стороне BC взята точка D, а на отрезке AD — точка O, причем CD = 4 и AO = 3OD. Окружность с центром O проходит через точку C. Найдите расстояние от точки C до точки пересечения этой окружности с прямой AB.
Дан треугольник ABC со сторонами AB = 29, AC = 20 и BC = 21. На стороне BC взята точка D, а на отрезке AD — точка O, причем CD = 7 и AO = 3OD. Окружность с центром O проходит через точку C. Найдите расстояние от точки C до точки пересечения этой окружности с прямой AB.
Через точку T внутри треугольника ABC проведены три прямые k, l и m так, что k || AB, l || BC, m || AC. Эти прямые образуют три треугольника, два из которых равны по площади.
а) Докажите, что квадрат суммы квадратных корней из площадей треугольников, образованных прямыми k, l и m со сторонами треугольника ABC, равен площади этого треугольника;
б) Найдите площадь меньшего треугольника, если известно, что площадь треугольника ABC равна 25, а площадь каждого из равных треугольников равна 4.
Биссектрисы AN и BMтреугольника ABC пересекаются в точке О, причем В четырехугольник ONCM вписана окружность.
а) Докажите, что треугольник ABC равнобедренный.
б) Найдите радиус окружности.
Окружность с центром O, вписанная в треугольник ABC, касается стороны BC в точке P и пересекает отрезок BO в точке Q. При этом отрезки OC и QP параллельны.
а) Докажите, что треугольник ABC ― равнобедренный треугольник.
б) Найдите площадь треугольника BQP, если точка O делит высоту BD треугольника в отношении BO : OD = 3 : 1 и AC = 4.
Дан треугольник ABC со сторонами AB = 5, AC = 3 и BC = 4. На стороне BC взята точка D, а на отрезке AD — точка O, причем CD = и AO = 3OD. Окружность с центром O проходит через точку C. Найдите расстояние от точки C до точки пересечения этой окружности с прямой AB.
Дан треугольник ABC со сторонами AB = 24, AC = 15 и BC = 18. На стороне BC взята точка D, а на отрезке AD — точка O, причем CD = 6 и AO = 3OD. Окружность с центром O проходит через точку C. Найдите расстояние от точки C до точки пересечения этой окружности с прямой AB.
Дан треугольник ABC со сторонами AC = 30, BC = 40 и AB = 50. Вписанная в него окружность с центром I касается стороны BC в точке L, M — середина BC, AP — биссектриса треугольника ABC, O — центр описанной около него окружности.
а) Докажите, что P — середина отрезка LM.
б) Пусть прямые OI и AC пересекаются в точке K, а продолжение биссектрисы AP пересекает описанную окружность в точке Q. Найдите площадь четырёхугольника OKCQ.
Дан треугольник ABC со сторонами AC = 6, BC = 8 и AB = 10. Вписанная в него окружность с центром I касается стороны BC в точке L, M — середина BC, AP — биссектриса треугольника ABC, O — центр описанной около него окружности.
а) Докажите, что P — середина отрезка LM.
б) Пусть прямые OI и AC пересекаются в точке K, а продолжение биссектрисы AP пересекает описанную окружность в точке Q. Найдите площадь четырёхугольника OKCQ.
Расстояние между параллельными прямыми равно 12. На одной из них лежит точка C, а на другой — точки A и B, причем треугольник ABC — равнобедренный и его боковая сторона равна 13. Найдите радиус окружности, вписанной в треугольник ABC.
Прямая, перпендикулярная гипотенузе прямоугольного треугольника, отсекает от него четырёхугольник, в который можно вписать окружность. Найдите радиус окружности, если отрезок этой прямой, заключённый внутри треугольника, равен 14, а отношение катетов треугольника равно
Прямая, перпендикулярная гипотенузе прямоугольного треугольника, отсекает от него четырёхугольник, в который можно вписать окружность. Найдите радиус окружности, если отрезок этой прямой, заключённый внутри треугольника, равен 40, а отношение катетов треугольника равно
Другой способ: найдя OF, сразу получаем
через равные треугольники IDK и IFO. Тогда 