СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости



О ПОЛОМКЕ И ВОССТАНОВЛЕННОЙ КОПИИ РЕШУ ЕГЭ

Поиск
'



Всего: 116    1–20 | 21–40 | 41–60 | 61–80

Добавить в вариант

Задание 19 № 506031

а) В классе была дана контрольная. Известно, что по крайней мере две трети задач этой контрольной оказались трудными: каждую такую задачу не решили по крайней мере две трети школьников. Известно также, что по крайней мере две трети школьников класса написали контрольную хорошо: каждый такой школьник решил по крайней мере две трети задач контрольной. Могло ли такое быть?

б) Изменится ли ответ в этой задаче, если заменить везде в ее условии две трети на три четверти?

в) Изменится ли ответ в этой задаче, если заменить везде в ее условии две трети на семь девятых?

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 31.
Раздел кодификатора ФИПИ/Решу ЕГЭ: Сюжетные задачи: кино, театр, мотки верёвки

Задание 19 № 513719

После того, как учитель проверил контрольную работу, выяснилось, что первую задачу верно решила меньшая часть класса (быть может, никто — Решу ЕГЭ). На перемене один ученик доказал учителю, что его решение первого задания также является верным. Также известно, что в классе учится не более 30, но не менее 20 человек.

а) Могло ли получиться так, что теперь уже большая часть класса верно решила первую задачу?

б) Могло ли получиться так, что исходно процент решивших первую задачу, выражался нецелым числом, а после перемены ― целым числом?

в) Какое наименьшее натуральное значение может после перемены принять процент учеников класса, верно решивших первую задачу?


Аналоги к заданию № 513689: 513719 Все

Источник: Проб­ный эк­за­мен по про­филь­ной ма­те­ма­ти­ке Санкт-Петербург 05.04.2016. Ва­ри­ант 2.
Раздел кодификатора ФИПИ/Решу ЕГЭ: Сюжетные задачи: кино, театр, мотки верёвки
Решение · Прототип задания · · Видеокурс · Курс Д. Д. Гущина ·

Задание 19 № 524056

У Вовы есть набор из n грузиков попарно различных натуральных масс в граммах и чашечные весы, которые находятся в равновесии, если на каждой из двух их чаш лежат грузики с одинаковыми суммарными массами. Известно, что, какие бы два из них ни положили на одну чашу весов, всегда можно положить на другую чашу один или несколько из оставшихся грузиков так, что весы уравновесятся.

а) Может ли у Вовы быть ровно 6 грузиков, среди которых есть грузик массой 5 г?

б) Может ли у Вовы быть ровно 5 грузиков?

в) Известно, что среди грузиков Вовы есть грузик массой 1 г. Какую наименьшую массу может иметь самый тяжёлый грузик Вовы?


Аналоги к заданию № 524056: 524078 Все

Раздел кодификатора ФИПИ/Решу ЕГЭ: Сюжетные задачи: кино, театр, мотки верёвки

Задание 19 № 524078

У Вовы есть набор из n грузиков попарно различных натуральных масс в граммах и чашечные весы, которые находятся в равновесии, если на каждой из двух их чаш лежат грузики с одинаковыми суммарными массами. Известно, что, какие бы два из них ни положили на одну чашу весов, всегда можно положить на другую чашу один или несколько из оставшихся грузиков так, что весы уравновесятся.

а) Может ли у Вовы быть ровно 6 грузиков, среди которых есть грузик массой 7 г?

б) Может ли у Вовы быть ровно 5 грузиков?

в) Известно, что среди грузиков Вовы самый лёгкий грузик имеет массу 2 г. Какую наименьшую массу может иметь самый тяжёлый грузик Вовы?


Аналоги к заданию № 524056: 524078 Все

Раздел кодификатора ФИПИ/Решу ЕГЭ: Сюжетные задачи: кино, театр, мотки верёвки

Задание 19 № 500136

Каждый из группы учащихся сходил в кино или в театр, при этом возможно, что кто-то из них мог сходить и в кино, и в театр. Известно, что в театре мальчиков было не более от общего числа учащихся группы, посетивших театр, а в кино мальчиков было не более от общего числа учащихся группы, посетивших кино.

 

а) Могло ли быть в группе 9 мальчиков, если дополнительно известно, что всего в группе было 20 учащихся?

б) Какое наибольшее количество мальчиков МОГЛО быть в группе, если дополнительно известно, что всего в группе было 20 учащихся?

в) Какую наименьшую долю могли составлять девочки от общего числа учащихся в группе без дополнительного условия пунктов а и б?


Аналоги к заданию № 505541: 500136 500371 Все

Источник: ЕГЭ по математике 07.06.2012 года, основная волна.
Раздел кодификатора ФИПИ/Решу ЕГЭ: Сюжетные задачи: кино, театр, мотки верёвки
Решение · Прототип задания · · Видеокурс · Курс Д. Д. Гущина ·

Задание 19 № 500371

Каждый из группы учащихся сходил в кино или в театр, при этом возможно, что кто-то из них мог сходить и в кино, и в театр. Известно, что в театре мальчиков было не более от общего числа учащихся группы, посетивших театр, а в кино мальчиков было не более от общего числа учащихся группы, посетивших кино.

 

а) Могло ли быть в группе 10 мальчиков, если дополнительно известно, что всего в группе было 20 учащихся?

б) Какое наибольшее количество мальчиков МОГЛО быть в группе, если дополнительно известно, что всего в группе было 20 учащихся?

в) Какую наименьшую долю могли составлять девочки от общего числа учащихся в группе без дополнительного условия пунктов а и б?


Аналоги к заданию № 505541: 500136 500371 Все

Источник: И. В. Яковлев: Материалы по математике 2012 год
Раздел кодификатора ФИПИ/Решу ЕГЭ: Сюжетные задачи: кино, театр, мотки верёвки

Задание 19 № 501071

За новогодним столом дети ели бутерброды и конфеты, причем каждый что-то ел, и может быть так, что кто-то ел и то и другое. Известно, что мальчиков, евших бутерброды, было не более чем от общего числа детей, евших бутерброды, а мальчиков, евших конфеты, было не более от общего числа детей, евших конфеты.

а) Могло ли за столом быть 13 мальчиков, если дополнительно известно, что всего за столом было 25 детей?

б) Какое наибольшее количество мальчиков могло быть за столом, если дополнительно известно, что всего за столом было 25 детей?

в) Какую наименьшую долю могли составлять девочки от общего числа детей без дополнительного условия пунктов а и б?

Раздел кодификатора ФИПИ/Решу ЕГЭ: Сюжетные задачи: кино, театр, мотки верёвки

Задание 19 № 505433

Несколько экспертов оценивают несколько кинофильмов. Каждый из них выставляет оценку каждому кинофильму — целое число баллов от 1 до 10 включительно. Известно, что каждому кинофильму все эксперты выставили различные оценки. Рейтинг кинофильма — это среднее геометрическое оценок всех экспертов. Среднее геометрическое чисел равно Оказалось, что рейтинги всех кинофильмов — различные целые числа.

а) Могло ли быть 2 эксперта и 5 кинофильмов?

б) Могло ли быть 3 эксперта и 4 кинофильма?

в) При каком наибольшем количестве экспертов описанная ситуация возможна для одного кинофильма?

Источник: ЕГЭ по ма­те­ма­ти­ке 05.06.2014. Ос­нов­ная волна. Ва­ри­ант 901., Резервная волна ЕГЭ по математике 24.06.2019. Вариант 992, За­да­ния 19 (С7) ЕГЭ 2019
Раздел кодификатора ФИПИ/Решу ЕГЭ: Сюжетные задачи: кино, театр, мотки верёвки

Задание 19 № 505541

Каждый из группы учащихся сходил в кино или в театр, при этом возможно, что кто-то из них мог сходить и в кино, и в театр. Известно, что в театре мальчиков было не более от общего числа учащихся группы, посетивших театр, а в кино мальчиков было не более от общего числа учащихся группы, посетивших кино.

 

а) Могло ли быть в группе 10 мальчиков, если дополнительно известно, что всего в группе было 20 учащихся?

б) Какое наибольшее количество мальчиков могло быть в группе, если дополнительно известно, что всего в группе было 20 учащихся?

в) Какую наименьшую долю могли составлять девочки от общего числа учащихся в группе без дополнительного условия пунктов а) и б)?


Аналоги к заданию № 505541: 500136 500371 Все

Раздел кодификатора ФИПИ/Решу ЕГЭ: Сюжетные задачи: кино, театр, мотки верёвки

Задания Д16 C7 № 505953

Требуется сделать набор гирек, каждая из которых весит целое число граммов, с помощью которых можно взвесить любой целый вес от 1 грамма до 55 граммов включительно даже в том случае, если некоторые гирьки потеряны (гирьки кладутся на одну чашку весов, измеряемый вес — на другую).

а) необходимо подобрать 10 гирек, из которых может быть потеряна любая одна;

б) необходимо подобрать 12 гирек, из которых могут быть потеряны любые две. (В обоих случаях докажите, что найденный Вами набор гирек обладает требуемыми свойствами.)

Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 18.
Раздел кодификатора ФИПИ/Решу ЕГЭ: Сюжетные задачи

Задания Д15 C7 № 514923

Назовем кусок веревки стандартным, если его длина не меньше 168 см, но не больше 175 см.

а) Некоторый моток веревки разрезали на 24 стандартных куска, среди которых есть куски разной длины. На какое наибольшее число одинаковых стандартных кусков можно было бы разрезать тот же моток веревки?

б) Найдите такое наименьшее число l, что любой моток веревки, длина которого больше l см, можно разрезать на стандартные куски.


Аналоги к заданию № 500068: 500351 514923 Все

Источник: И. В. Яковлев: Материалы по математике 2012 год
Раздел кодификатора ФИПИ/Решу ЕГЭ: Сюжетные задачи: кино, театр, мотки верёвки

Задание 19 № 526541

В течение n дней каждый день на доску записывают натуральные числа, каждое из которых меньше 6. При этом каждый день (кроме первого) сумма чисел, записанных на доску в этот день, больше, а количество меньше, чем в предыдущий день.

а) Известно, что сумма чисел, записанных в первый день, равна 7. Может ли n быть больше 6?

б) Может ли среднее арифметическое чисел, записанных в первый день, быть меньше 2, а среднее арифметическое всех чисел, записанных за все дни, быть больше 2,5?

в) Известно, что n = 6. Какое наименьшее количество чисел могло быть записано за все эти дни?


Аналоги к заданию № 526345: 526541 Все

Источник: Основная волна ЕГЭ по математике 29.05.2019. Вариант 409, За­да­ния 19 (С7) ЕГЭ 2019
Раздел кодификатора ФИПИ/Решу ЕГЭ: Сюжетные задачи: кино, театр, мотки верёвки

Задания Д16 C7 № 527183

У каждого учащегося в классе дома живет кошка или собака, а у некоторых, возможно, живет и кошка, собака. Известно, что мальчиков, имеющих собак, не более от общего числа учащихся, имеющих собак, а мальчиков, имеющих кошек, не более от общего числа учащихся, имеющих кошек.

а) Может ли в классе быть 11 мальчиков, если дополнительно известно, что всего в классе 21 учащийся?

б) Какое наибольшее количество мальчиков может быть в классе, если дополнительно известно, что всего в классе 21 учащийся?

в) Какую наименьшую долю могли составлять девочки от общего числа учащихся без дополнительного условия пунктов а и б?

Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 241.
Раздел кодификатора ФИПИ/Решу ЕГЭ: Сюжетные задачи

Задания Д15 C7 № 501220

В стране Дельфиния установлена следующая система подоходного налога (денежная единица Дельфинии ― золотые):

 

Заработок (в золотых)Налог (в %)
1 — 1001
101 — 40020
Более 40050

а) Два брата заработали в сумме 1000 золотых. Как им выгоднее всего распределить эти деньги между собой, чтобы в семье осталось как можно больше денег после налогообложения? При дележе каждый получает целое число золотых.

б) Как выгоднее всего распределить те же 1000 золотых между тремя братьями, при условии, что каждый также получит целое число золотых?

Источник: Добровольное тре­ни­ро­воч­ное тестирование Санкт-Пе­тер­бург 2013.
Раздел кодификатора ФИПИ/Решу ЕГЭ: Сюжетные задачи: кино, театр, мотки верёвки
Решение · · Видеокурс ·

Задание 19 № 505621

Леша задумал двузначное число (от 10 до 99). Гриша пытается его отгадать, называя двузначные числа. Если Гриша правильно называет число, или же одну цифру называет правильно, а в другой ошибается не более чем на единицу, то Леша отвечает «тепло»; в остальных случаях Леша отвечает «холодно». (Например, если задумано число 65, то назвав 65, 64, 66, 55 или 75, Гриша услышит в ответ «тепло», а в остальных случаях услышит «холодно».)

а) Покажите, что нет способа, при котором Гриша гарантированно узнает число, истратив 18 попыток.

б) Придумайте способ, при котором Гриша гарантированно узнает число, истратив 24 попытки (какое бы число ни задумал Леша).

в) А за 22 попытки получится?

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 45.
Раздел кодификатора ФИПИ/Решу ЕГЭ: Сюжетные задачи: кино, театр, мотки верёвки

Задания Д16 C7 № 505699

Даны N синих и N красных палочек, причем сумма длин синих палочек равна сумме длин красных. Известно, что из синих палочек можно сложить N‐угольник, и из красных — тоже. Всегда ли можно выбрать одну синюю и одну красную палочки и перекрасить их (синюю — в красный цвет, а красную — в синий) так, что снова из синих палочек можно будет сложить N‐угольник, и из красных — тоже?

Решите задачу

а) для N = 3;

б) для произвольного натурального N > 3.

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 57.
Раздел кодификатора ФИПИ/Решу ЕГЭ: Сюжетные задачи

Задания Д16 C7 № 505935

В школьной олимпиаде по математике участвовало 100 человек, по физике — 50 человек, по информатике — 48 человек. Когда каждого из учеников спросили, в скольких олимпиадах он участвовал, ответ «по крайней мере в двух» дали в два раза меньше человек, чем ответ «не менее, чем в одной», а ответ «в трех» — втрое меньше человек, чем ответ «не менее, чем в одной». Сколько всего учеников приняло участие в этих олимпиадах?

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 15.
Раздел кодификатора ФИПИ/Решу ЕГЭ: Сюжетные задачи

Задания Д16 C7 № 505947

а) На постоялом дворе остановился путешественник, и хозяин согласился в качестве уплаты за проживание брать кольца золотой цепочки, которую тот носил на руке. Но при этом он поставил условие, чтобы оплата была ежедневной: каждый день хозяин должен был иметь на одно кольцо больше, чем в предыдущий. Замкнутая в кольцо цепочка содержала 11 колец, а путешественник собирался прожить ровно 11 дней, поэтому он согласился. Какое наименьшее число колец он должен распилить, чтобы иметь возможность платить хозяину?

б) Из скольких колец должна состоять цепочка, чтобы путешественник мог прожить на постоялом дворе наибольшее число дней при условии, что он может распилить только n колец?

Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 17.
Раздел кодификатора ФИПИ/Решу ЕГЭ: Сюжетные задачи

Задания Д16 C7 № 506043

Геологи взяли в экспедицию 80 банок консервов, веса которых все известны и различны (имеется список). Через некоторое время надписи на банках стали нечитаемыми, и только завхоз знает где что. Он может все это доказать (т. е. обосновать, что в какой банке находится), не вскрывая консервов и пользуясь только сохранившимся списком и двухчашечными весами со стрелкой, показывающей разницу весов на чашках. Докажите, что ему для этой цели

а) достаточно четырех взвешиваний;

б) недостаточно трех взвешиваний.

Комментарий. Отметим еще раз, что завхоз должен обосновать, что в какой банке находится для всех 80 банок.

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 33.
Раздел кодификатора ФИПИ/Решу ЕГЭ: Сюжетные задачи

Задания Д15 C7 № 514922

Имеется 33 коробки массой 19 кг каждая и 27 коробок массой 49 кг каждая. Все эти коробки раскладываются по двум контейнерам. Пусть S — модуль разности суммарных масс коробок в контейнерах. Найдите наименьшее значение S:

а) если дополнительно требуется, что в контейнерах должно находиться одинаковое количество коробок;

б) без дополнительного условия пункта а.

Источник: И. В. Яковлев: Материалы по математике 2012 год
Раздел кодификатора ФИПИ/Решу ЕГЭ: Сюжетные задачи: кино, театр, мотки верёвки
Всего: 116    1–20 | 21–40 | 41–60 | 61–80