Поиск
'



Всего: 3    1–3

Добавить в вариант

Задание 14 № 517541

Дана правильная четырёхугольная пирамида SABCD с вершиной S. Точка M расположена на SD так, что SM : SD = 2 : 3. P — середина ребра AD, а Q середина ребра BC.

а) Докажите, что сечение пирамиды плоскостью MQP — равнобедренная трапеция.

б) Найдите отношение объёмов многогранников, на которые плоскость MQP разбивает пирамиду.

Источник: Задания 14 (C2) ЕГЭ 2017

Задание 14 № 514506

В правильной треугольной призме ABCA1B1C1 все рёбра равны 6. На рёбрах AA1 и CC1 отмечены точки M и N соответственно, причём AM = 2, CN = 1.

а) Докажите, что плоскость MNB1 разбивает призму на два многогранника, объёмы которых равны.

б) Найдите объём тетраэдра MNBB1.


Аналоги к заданию № 514506: 514513 Все

Источник: Задания 14 (С2) ЕГЭ 2016, ЕГЭ — 2016. Досрочная волна. Вариант 201. Юг
Решение · · Курс 80 баллов · Курс Д. Д. Гущина ·

Задание 14 № 517446

На рёбрах AB и BC треугольной пирамиды ABCD отмечены точки M и N соответственно, причём AM : BM = CN : NB = 1 : 2. Точки P и Q — середины ребер DA и DC соответственно.

а) Докажите, что P, Q, M и N лежат в одной плоскости.

б) Найти отношение объёмов многогранников, на которые плоскость PQM разбивает пирамиду.


Аналоги к заданию № 517446: 517439 517453 Все

Источник: Задания 14 (C2) ЕГЭ 2017, ЕГЭ — 2017. Основная волна 02.06.2017. Вариант 301 (C часть).
Решение · · Курс 80 баллов · Курс Д. Д. Гущина ·
Всего: 3    1–3