СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Поиск
'



Всего: 12    1–12

Добавить в вариант

Задания Д6 C2 № 501710

В правильной четырёхугольной призме ABCDA1B1C1D1 сторона основания равна 20, а боковое ребро AA1 = 7. Точка M принадлежит ребру A1D1 и делит его в отношении 2 : 3, считая от вершины D1. Найдите площадь сечения этой призмы плоскостью, проходящей через точки B, D и M.


Аналоги к заданию № 501710: 502294 511377 Все

Источник: ЕГЭ по ма­те­ма­ти­ке 03.06.2013. Ос­нов­ная волна. Сибирь. Ва­ри­ант 302.

Задания Д6 C2 № 502294

В правильной четырёхугольной призме ABCDA1B1C1D1 сторона основания равна 11, а боковое ребро AA1 = 7. Точка K принадлежит ребру B1C1 и делит его в отношении 8 : 3, считая от вершины B1. Найдите площадь сечения этой призмы плоскостью, проходящей через точки B, D и K.


Аналоги к заданию № 501710: 502294 511377 Все


Задание 14 № 513606

В правильной четырёхугольной призме ABCDA1B1C1D1 сторона основания AB равна 3, а боковое ребро На рёбрах AB, A1D1 и C1D1 отмечены точки M, N и K соответственно, причём AM = A1N = C1K = 1.

а) Пусть L — точка пересечения плоскости MNK с ребром BC. Докажите, что MNKL — квадрат.

б) Найдите площадь сечения призмы плоскостью MNK.

Источник: ЕГЭ по ма­те­ма­ти­ке 28.03.2016. До­сроч­ная волна, ва­ри­ант 101

Задание 14 № 514474

В пра­виль­ной четырёхуголь­ной приз­ме АВСDА1В1С1D1 сто­ро­на АВ ос­но­ва­ния равна 6, а бо­ко­вое ребро АА1 равно На реб­рах BC и C1D1 от­ме­че­ны точки К и L со­от­вет­ствен­но, причём ВК = 4, C1L = 5. Плос­кость γ па­рал­лель­на пря­мой BD и со­дер­жит точки К и L.

а) До­ка­жи­те, что пря­мая AC1 пер­пен­ди­ку­ляр­на плос­ко­сти γ;

б) Най­ди­те рас­сто­я­ние от точки B1 до плос­ко­сти γ.


Аналоги к заданию № 514474: 514527 514534 514653 Все

Источник: За­да­ния 14 (С2) ЕГЭ 2016, ЕГЭ по математике 06.06.2016. Ос­нов­ная волна. Юг (C часть).

Задания Д6 C2 № 500132

В правильной четырёхугольной призме ABCDA1B1C1D1 стороны основания равны 2, а боковые рёбра равны 3. На ребре AA1 отмечена точка E так, что AE : EA1 = 1 : 2. Найдите угол между плоскостями ABC и BED1.


Аналоги к заданию № 500132: 500588 500367 500595 511344 Все

Источник: ЕГЭ по математике 07.06.2012 года, основная волна.

Задания Д6 C2 № 500588

В правильной четырёхугольной призме ABCDA1B1C1D1 стороны основания равны 1, а боковые рёбра равны 5. На ребре AA1 отмечена точка E так, что AE : EA1 = 2 : 1. Найдите угол между плоскостями ABC и BED1.


Аналоги к заданию № 500132: 500588 500367 500595 511344 Все

Решение · Прототип задания · ·

Задания Д7 C2 № 508197

В правильной четырехугольной призме ABCDA1B1C1D1 сторона основания равна а боковое ребро равно 2. Точка M — середина ребра AA1. Найдите расстояние от точки M до плоскости DA1C1.

Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 106.

Задание 14 № 513684

В правильной четырехугольной призме ABCDA1B1C1D1 точка K делит боковое ребро AA1 в отношении AK : KA1 = 1 : 2. Через точки B и K проведена плоскость α, параллельная прямой AC и пересекающая ребро DD1 в точке M.

а) Докажите, что плоскость α делит ребро DD1 в отношении DM : MD1 = 2 : 1.

б) Найдите площадь сечения, если известно, что AB = 4, AA1 = 6.


Аналоги к заданию № 513684: 513714 Все

Источник: Пробный эк­за­мен по про­филь­ной математике Санкт-Петербург 05.04.2016. Ва­ри­ант 1.
Решение · ·

Задание 14 № 519473

Дана правильная четырехугольная призма ABCDA1B1C1D1. На ребре AA1 отмечена точка K так, что AK : KA1 = 1 : 2. Плоскость α проходит через точки B и K параллельно прямой AC. Эта плоскость пересекает ребро DD1 в точке M.

а) Докажите, что MD : MD1 = 2 : 1.

б) Найдите площадь сечения, если AB = 4, AA1 = 6.

Источник: Досрочный ЕГЭ по математике (Центр) 30.03.2018

Задания Д6 C2 № 485966

В пра­виль­ной че­ты­рех­уголь­ной приз­ме ABCDA1B1C1D1 вы­со­та равна 1, а сто­ро­на ос­но­ва­ния равна Точка M — се­ре­ди­на ребра AA1.

а) До­ка­жи­те, что пи­ра­ми­ды и рав­но­ве­ли­ки.

б) Най­ди­те рас­сто­я­ние от точки M до плос­ко­сти DA1C1.


Задание 14 № 516780

В па­рал­ле­ле­пи­пе­де ABCDA1B1C1D1 точка F се­ре­ди­на ребра AB, а точка E делит ребро DD1 в от­но­ше­нии DE : ED1 = 6 : 1. Через точки F и E про­ве­де­на плос­кость α, па­рал­лель­ная пря­мой AC и пе­ре­се­ка­ю­щая диа­го­наль B1D в точке О.

а) До­ка­жи­те, что плос­кость α делит диа­го­наль DB1 в от­но­ше­нии DO : OB1 = 2 : 3.

б) Най­ди­те угол между плос­ко­стью α и плос­ко­стью (ABC), если до­пол­ни­тель­но из­вест­но, что ABCDA1B1C1D1 — пра­виль­ная че­ты­рех­уголь­ная приз­ма, сто­ро­на ос­но­ва­ния ко­то­рой равна 4, а вы­со­та равна 7.


Аналоги к заданию № 516780: 516761 Все

Источник: Пробный эк­за­мен Санкт-Петербург, 11.04.2017. Вариант 2., Пробный эк­за­мен Санкт-Петербург, 11.04.2017. Вариант 2. (C часть).

Задания Д7 C2 № 521250

В правильной четырехугольной призме  АВ = ВС = 8, Через точки А и С перпендикулярно проведена плоскость Ω.

а) Докажите, что плоскость Ω пересекает ребро  в такой точке М, что 

б) Найдите угол между плоскостями  Ω  и  .

Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 194.
Всего: 12    1–12