Всего: 80 1–20 | 21–40 | 41–60 | 61–80
Добавить в вариант
Сторона основания правильной четырёхугольной пирамиды равна a. Боковая грань образует с плоскостью основания угол 45°. Найдите радиус сферы, описанной около пирамиды.
В правильную четырёхугольную пирамиду, боковое ребро которой равно 10, а высота равна 6, вписана сфера. (Сфера касается всех граней пирамиды.) Найдите площадь этой сферы.
В правильную четырёхугольную пирамиду, боковое ребро которой равно 17, а высота равна 7, вписана сфера. (Сфера касается всех граней пирамиды.) Найдите площадь этой сферы.
Боковое ребро правильной четырёхугольной пирамиды равно b, а плоский угол при вершине равен α. Найдите радиус сферы описанной около пирамиды.
Длины всех ребер правильной четырёхугольной пирамиды PABCD с вершиной P равны между собой. Точка M — середина бокового ребра пирамиды AP.
а) Докажите, что плоскость, проходящая через точки B и M и перпендикулярная плоскости BDP, делит высоту пирамиды пополам.
б) Найдите угол между прямой BM и плоскостью BDP.
Все рёбра правильной четырёхугольной пирамиды SABCD с вершиной S равны 6. Основание высоты SO этой пирамиды является серединой отрезка SS1, M — середина ребра AS, точка L лежит на ребре BC так, что BL : LC = 1 : 2.
а) Докажите, что сечение пирамиды SABCD плоскостью S1LM — равнобокая трапеция.
б) Вычислите длину средней линии этой трапеции.
В основании правильной пирамиды PABCD лежит квадрат ABCD со стороной 6. Сечение пирамиды проходит через вершину В и середину ребра PD перпендикулярно этому ребру.
а) Докажите, что угол наклона бокового ребра пирамиды к её основанию равен 60°.
б) Найдите площадь сечения пирамиды.
Дана правильная четырёхугольная пирамида SABCD с вершиной S. Точка M расположена на SD так, что SM : SD = 2 : 3. P — середина ребра AD, а Q середина ребра BC.
а) Докажите, что сечение пирамиды плоскостью MQP — равнобедренная трапеция.
б) Найдите отношение объёмов многогранников, на которые плоскость MQP разбивает пирамиду.
В основании правильной четырёхугольной пирамиды MABCD лежит квадрат ABCD со стороной 4. Противоположные боковые рёбра пирамиды попарно перпендикулярны. Через середины рёбер MA и MB проведена плоскость α, параллельная ребру MС.
а) Докажите, что сечение плоскостью α пирамиды MABC является параллелограммом.
б) Найдите площадь сечения пирамиды MABC плоскостью α.
Площадь основания правильной четырёхугольной пирамиды SABCD равна 64.
а) Постройте прямую пересечения плоскости SAC и плоскости, проходящей через вершину S этой пирамиды, середину стороны АВ и центр основания.
б) Найдите площадь боковой поверхности этой пирамиды, если площадь сечения пирамиды плоскостью SAC равна 64.
В правильной четырёхугольной пирамиде SABCD с основанием ABCD проведено сечение через середины рёбер AB и BC и вершину S. Найдите площадь этого сечения, если боковое ребро пирамиды равно 5, а сторона основания равна 4.
Площадь треугольника, образованного диагональным сечением правильной четырёхугольной пирамиды SABCD с вершиной S, вдвое больше площади её основания.
а) Постройте это сечение;
б) Найдите косинус плоского угла при вершине пирамиды.
В правильной четырёхугольной пирамиде SABCD с вершиной S сторона основания равна 8. Точка L — середина ребра SC. Тангенс угла между прямыми BL и SA равен
а) Пусть O — центр основания пирамиды. Докажите, что прямые BO и LO перпендикулярны.
б) Найдите площадь поверхности пирамиды.
На ребре AB правильной четырёхугольной пирамиды SABCD с основанием ABCD отмечена точка Q, причём AQ : QB = 1 : 2. Точка P — середина ребра AS.
а) Докажите, что плоскость DPQ перпендикулярна плоскости основания пирамиды.
б) Найдите площадь сечения DPQ, если площадь сечения DSB равна 6.
На ребре AB правильной четырёхугольной пирамиды SABCD с основанием ABCD отмечена точка Q, причём AQ : QB = 1 : 2. Точка P — середина ребра AS.
а) Докажите, что плоскость DPQ перпендикулярна плоскости основания пирамиды.
б) Найдите площадь сечения DPQ, если площадь сечения DSB равна
В основании правильной четырёхугольной пирамиды MABCD лежит квадрат ABCD со стороной 6. Противоположные боковые рёбра пирамиды попарно перпендикулярны. Через середины рёбер MA и MB проведена плоскость α, параллельная ребру MC.
а) Докажите, что сечение плоскостью α пирамиды MABC является параллелограммом.
б) Найдите площадь сечения пирамиды MABC плоскостью α.
Площадь боковой поверхности правильной четырёхугольной пирамиды SABCD равна 108, а площадь полной поверхности этой пирамиды равна 144. Найдите площадь сечения, проходящего через вершину S этой пирамиды и через диагональ её основания.
В правильной четырёхугольной пирамиде SABCD с вершиной S сторона основания равна 4. Точка L — середина ребра SC. Тангенс угла между прямыми BL и SA равен
а) Пусть O — центр основания пирамиды. Докажите, что прямые BO и LO перпендикулярны.
б) Найдите площадь поверхности пирамиды.
В правильной четырёхугольной пирамиде SABCD сторона AB основания равна а высота SH пирамиды равна 3. Точки M и N — середины рёбер CD и AB, соответственно, а NT — высота пирамиды NSCD с вершиной N и основанием SCD.
а) Докажите, что точка T является серединой SM.
б) Найдите расстояние между NT и SC.
На ребре SD правильной четырёхугольной пирамиды SABCD отмечена точка M, причем Точки P и Q — середины рёбер BC и AD соответственно
а) Докажите, что сечение пирамиды плоскостью MPQ является равнобедренной трапецией.
б) Найдите отношение объемов многогранников, на которые плоскость MPQ разбивает пирамиду.
Мне кажется у вас ошибка при нахождение радиуса . Не могли бы вы подробно пояснить нахождение радиуса
Все верно. Куда уж подробнее?
13*r=(7-r)*2*30^(1/2)
До этого момента решение схожее, дальше в решении на сайте идет бездоказательный переход, у меня получилось так:
13*r+2*r*30^(1/2)=14*30^(1/2) ===>
r*(13+2*30^(1/2)=14*30^(1/2)===>
r=(14*30^(1/2))/(13+2*30^(1/2))
Проверки показали, что этот радиус является верным и никак к вашему не приводится.
Кстати говоря, решение выходит:
S=(4*(пи)*196*30)/(169+52*30^(1/2)+120)
Именно такой радиус и получается в решении. Домножьте на сопряжённое:
числитель и знаменатель, тогда, после сокращений, получите то же, что и в решении.