СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Поиск
'



Всего: 6    1–6

Добавить в вариант

Задание 14 № 513606

В правильной четырёхугольной призме ABCDA1B1C1D1 сторона основания AB равна 3, а боковое ребро На рёбрах AB, A1D1 и C1D1 отмечены точки M, N и K соответственно, причём AM = A1N = C1K = 1.

а) Пусть L — точка пересечения плоскости MNK с ребром BC. Докажите, что MNKL — квадрат.

б) Найдите площадь сечения призмы плоскостью MNK.

Источник: ЕГЭ по ма­те­ма­ти­ке 28.03.2016. До­сроч­ная волна, ва­ри­ант 101

Задания Д7 C2 № 506051

В прямом кругом цилиндре, осевое сечение которого квадрат со стороной 12, хорда , равная перпендикулярна диаметру Найти площадь сечения цилиндра плоскостью если образующая цилиндра.

Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 35.
Решение · ·

Задания Д7 C2 № 514873

В прямоугольном параллелепипеде ABCDA1B1C1D1 AB = AA1 = 6, BC = 4. Точка P — середина ребра AB, точка M лежит на ребре DD1 так, что DM : D1D = 2 : 3. 

а) Докажите, что прямая ВD1 параллельна плоскости MPC.  

б) Найдите площадь сечения параллелепипеда плоскостью MPC.

Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 162.

Задания Д7 C2 № 515209

В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 на ребре CC1 отмечена точка М так, что СМ : С1М = 1 : 3. Плоскость АЕМ пересекает ребро ВВ1 в точке К.  

А) Докажите, что ВК : В1К = 1 : 5. 

Б) Найдите площадь сечения призмы плоскостью АЕМ, если АВ = 3, СС1 = 8.

Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 171.

Задание 14 № 516799

Сечением прямоугольного параллелепипеда ABCDA1B1C1D1 плоскостью α содержащей прямую BD1 и параллельной прямой AC, является ромб.

а) Докажите, что грань ABCD — квадрат.

б) Найдите угол между плоскостями α и BCC1, если AA1 = 6, AB = 4.

Источник: ЕГЭ по математике 31.03.2017. Досрочная волна.

Задание 14 № 526725

Дан куб ABCDA1B1C1D1. Точка K — се­ре­ди­на ребра C1D1.

а) До­ка­жи­те, что рас­сто­я­ние от вер­ши­ны A1 до пря­мой BK равно ребру куба.

б) Най­ди­те угол между плос­ко­стя­ми KBA1 и BCC1.

Всего: 6    1–6