Поиск
'



Всего: 34    1–20 | 21–34

Добавить в вариант

Задания Д11 C4 № 484617

Четырехугольник ABCD описан около окружности и вписан в окружность. Прямые AB и DC пересекаются в точке M. Найдите площадь четырехугольника, если известно, что ∠AMD = α и радиусы окружностей, вписанных в треугольники BCM и AMD равны соответственно r и R.


Аналоги к заданию № 484617: 484618 506053 Все


Задания Д11 C4 № 484618

Четырехугольник KLMN описан около окружности и вписан в окружность. Прямые KL и NM пересекаются в точке P. Найдите площадь треугольника KPN, если известно, что ∠KPN = φ и радиусы окружностей, вписанных в треугольники KPN и LMP равны соответственно r и R.


Аналоги к заданию № 484617: 484618 506053 Все


Задания Д12 C4 № 527359

Четырехугольник, один из углов которого равен \arccos левая круглая скобка дробь, числитель — 3, знаменатель — 5 правая круглая скобка , вписан в окружность радиуса 2 корень из { 10} и описан около окружности радиуса 3.

а) Найдите площадь четырехугольника.

б) Найдите угол между диагоналями четырехугольника.

Источник: А. Ларин: Тренировочный вариант № 254.
Методы геометрии: Метод площадей

Задания Д11 C4 № 484606

Четырехугольник ABCD описан около окружности и вписан в другую окружность. Прямые AD и BC пересекаются в точке M. Найдите периметр треугольника ABM, если известно, что AB = a и CD = b.

Решение · · Курс 80 баллов ·

Задания Д12 C4 № 511268

В равнобедренную трапецию ABCD с основаниями BC и AD вписана окружность. Вторая окружность, построенная на боковой стороне AB как на диаметре, второй раз пересекает большее основание AD в точке H.

а) Докажите, что треугольник CHD равнобедренный.

б) Найдите основания трапеции, если радиусы первой и второй окружностей равны соответственно 6 и 6,5.

Источник: А. Ларин: Тренировочный вариант № 129.

Задания Д12 C4 № 527287

В четырехугольнике ABCD через каждую его вершину проведена прямая, проходящая через центр вписанной в него окружности. Три из этих прямых обладают тем свойством, что каждая из них делит площадь четырехугольника на две равновеликие части.

а) Докажите, что и четвертая прямая обладает тем же свойством.

б) Какие значения могут принимать углы этого четырехугольника, если один из них равен 108°?

Источник: А. Ларин. Тренировочный вариант № 278.

Задания Д12 C4 № 511275

В равнобокой описанной трапеции ABCD, где угол B тупой, а BC и AD — основания, проведены: 1) биссектриса угла B; 2) высота из вершины С; 3) прямая, параллельная AB и проходящая через середину отрезка CD.

а) Докажите, что все они пересекаются в одной точке.

б) Найдите расстояние между центрами вписанной и описанной окружностей трапеции ABCD, если известно, что BC = 8, AD = 18.

Источник: А. Ларин: Тренировочный вариант № 130.
Методы геометрии: Метод координат

Задания Д12 C4 № 508104

В выпуклом четырехугольнике ABCD заключены две окружности одинакового радиуса r, касающиеся друг друга внешним образом. Центр первой окружности находится на отрезке, соединяющем вершину A с серединой F стороны CD, а центр второй окружности находится на отрезке, соединяющем вершину C с серединой E стороны AB. Первая окружность касается сторон AB, AD и CD, вторая окружность касается сторон AB, BC и CD.

а) Докажите, что AB || CD;

б) Найдите АС, если r = 2.

Источник: А. Ларин: Тренировочный вариант № 86.

Задания Д11 C4 № 484625

Прямая, перпендикулярная гипотенузе прямоугольного треугольника, отсекает от него четырехугольник, в который можно вписать окружность. Найдите радиус окружности, если отрезок этой прямой, заключённый внутри треугольника, равен 12, а косинус острого угла равен  дробь, числитель — 3, знаменатель — 5 .


Аналоги к заданию № 484624: 484625 485949 485957 511305 Все


Задания Д12 C4 № 514598

Три окружности, две из которых одинакового радиуса, попарно касаются друг друга внешним образом в точках A, B и C.

а) Докажите, что треугольник ABC равнобедренный.

б) Найдите радиус круга, вписанного в четырёхугольник с вершинами в точках A, B, C, O, если известно, что радиусы окружностей 6; 6 и 4, а точка O — центр меньшей из них.

Источник: А. Ларин: Тренировочный вариант № 160.

Задания Д12 C4 № 515108

В треугольнике АВС ВА = 8, ВС = 7, угол B равен 120°. Вписанная в треугольник окружность ω касается стороны АС в точке М

а) Докажите, что АМ = ВС

б) Найдите  длину  отрезка  с  концами  на  сторонах АВ и АС, перпендикулярного АВ и касающегося окружности ω.

Источник: А. Ларин: Тренировочный вариант № 165.

Задания Д11 C4 № 484624

Прямая, перпендикулярная боковой стороне равнобедренного треугольника, отсекает от него четырёхугольник, в который можно вписать окружность. Найдите радиус окружности, если отрезок прямой, заключённый внутри треугольника, равен 6, а отношение боковой стороны треугольника к его основанию равно  дробь, числитель — 5, знаменатель — 6 .


Аналоги к заданию № 484624: 484625 485949 485957 511305 Все

Методы геометрии: Свойства биссектрис

Задания Д12 C4 № 513773

В окружность радиуса R вписан четырехугольник ABCDP — точка пересечения его диагоналей, AB = CD = 5, AD > BC. Высота, опущенная из точки В на сторону AD, равна 3, а площадь треугольника ADP равна  дробь, числитель — 25, знаменатель — 2 .

а) Докажите, что ABCD — равнобедренная трапеция 

б) Найдите стороны ADBC и радиус окружности R.

Источник: А. Ларин: Тренировочный вариант № 148.

Задания Д12 C4 № 514720

В параллелограмм вписана окружность.

а) Докажите, что этот параллелограмм — ромб.

б) Окружность, касающаяся стороны ромба, делит её на отрезки, равные 3 и 2. Найдите площадь четырёхугольника с вершинами в точках касания окружности со сторонами ромба.


Аналоги к заданию № 513255: 514720 Все

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2016
Классификатор планиметрии: Окружность, вписанная в четырехугольник
Решение · Прототип задания · · Курс 80 баллов ·

Задания Д12 C4 № 505733

В треугольнике АВС основание ВС = 9,5, площадь треугольника равна 28,5. Окружность, вписанная в треугольник, касается средней линии, параллельной основанию.

а) Докажите, что АС + АВ = 3ВС.

б) Найдите меньшую из боковых сторон.

Источник: А. Ларин: Тренировочный вариант № 63.
Методы геометрии: Теорема косинусов

Задания Д12 C4 № 521917

В трапецию ABCD c основаниями ВС и AD вписана окружность с центром О, СН — высота трапеции, Е — точка пересечения диагоналей.

а) Докажите, что \angle OHC= дробь, числитель — 1, знаменатель — 2 \angle ADC.

б) Найдите площадь четырехугольника СЕОН, если известно, что \angle BAD=90 в степени circ, BC = 9, AD = 18.

Источник: А. Ларин: Тренировочный вариант № 238.

Задания Д12 C4 № 514061

В равнобокую трапецию вписана окружность. 

а) Докажите, что диаметр окружности равен среднему геометрическому длин оснований трапеции. (Средним  геометрическим двух положительных чисел а и b называется значение выражения   корень из { ab}

б) Найдите площадь четырехугольника с вершинами в точках касания окружности со сторонами трапеции, если известно, что длины оснований трапеции 8 и 18.

Источник: А. Ларин: Тренировочный вариант № 153.

Задания Д12 C4 № 527180

В четырехугольнике ABCD диагонали AC и BD пересекаются в точке K. Точки L и M являются соответственно серединами сторон BC и AD. Отрезок LM содержит точку K. Четырехугольник ABCD таков, что в него можно вписать окружность.

а) Докажите, что четырехугольник ABCD трапеция.

б) Найдите радиус этой окружности, если AB=3, AC= корень из { 13} и LK:KM=1:3.

Источник: А. Ларин: Тренировочный вариант № 241.
Методы геометрии: Теорема косинусов

Задания Д12 C4 № 511240

В прямоугольном треугольнике ABC синус угла A равен  дробь, числитель — 1, знаменатель — 3 . На гипотенузе AB взята точка H, а на катете AC — точка K. Известно, что прямая KH перпендикулярна гипотенузе и делит треугольник ABC на две равновеликие части.

а) Докажите, что в четырехугольник KHBC можно вписать окружность.

б) Найдите радиус этой окружности, если известно, что KH = 1.

Источник: А. Ларин: Тренировочный вариант № 125.

Задания Д12 C4 № 512672

В ромб вписана окружность Θ. Окружности w1 и w2 (разного радиуса) расположены так, что каждая касается окружности Θ и двух соседних сторон ромба. 

а) Докажите, что площадь круга, ограниченного окружностью Θ, составляет менее 80% площади ромба.

б) Найдите отношение радиусов окружностей w1 и w2, если известно, что диагонали ромба относятся, как 1 : 2. 

Источник: А. Ларин: Тренировочный вариант № 141.
Всего: 34    1–20 | 21–34