Поиск
'



Всего: 97    1–20 | 21–40 | 41–60 | 61–80

Добавить в вариант

Задания Д12 C4 № 504243

Две окружности пересекаются в точках P и Q. Прямая, проходящая через точку P, второй раз пересекает первую окружность в точке A, а вторую — в точке D. Прямая, проходящая через точку Q параллельно AD, второй раз пересекает первую окружность в точке B, а вторую — в точке C.

а) Докажите, что четырёхугольник ABCD — параллелограмм.

б) Найдите отношение BP : PC, если радиус первой окружности вдвое больше радиуса второй.


Аналоги к заданию № 504243: 510365 Все

Раздел: Планиметрия
Методы геометрии: Теорема синусов

Задание 16 № 504264

Две окружности пересекаются в точках P и Q. Прямая, проходящая через точку P, второй раз пересекает первую окружность в точке A, а вторую — в точке D. Прямая, проходящая через точку Q параллельно AD, второй раз пересекает первую окружность в точке B, а вторую — в точке C.

а) Докажите, что четырёхугольник ABCD — параллелограмм.

б) Найдите отношение CP : PB, если радиус первой окружности втрое больше радиуса второй.

Раздел: Планиметрия

Задание 16 № 519661

В выпуклом четырёхугольнике ABCD известны стороны и диагональ: AB = 3, BC = CD = 5, AD = 8, AC = 7.

а) Докажите, что вокруг этого четырёхугольника можно описать окружность.

б) Найдите BD.

Источник: ЕГЭ — 2018. Досрочная волна. Резервный день 11.04.2018. Запад (часть С).

Задания Д11 C4 № 512873

Окружности радиусов 3 и 5 с центрами O1 и O2 соответственно касаются в точке A. Прямая, проходящая через точку A, вторично пересекает меньшую окружность в точке B, а большую — в точке С. Найдите площадь выпуклого четырёхугольника, вершинами которого являются точки O1, O2, B и C, если ∠ABO1 = 15°.

Источник: ЕГЭ — 2014. Основная волна.

Задание 16 № 519685

Четырёхугольник ABCD вписан в окружность, причем сторона CD — диаметр этой окружности. Продолжение перпендикуляра AH к диагонали BD пересекает сторону CD в точке Е, а окружность — в точке F, причем H — середина AE.

а) Докажите, что четырёхугольник BCFE — параллелограмм.

б) Найдите площадь четырёхугольника ABCD, если известно, что AB = 3 и AH=2 корень из { 2}.

Методы геометрии: Свойства хорд
Классификатор планиметрии: Окружности и четырёхугольники

Задание 16 № 525120

Дана трапеция ABCD с основаниями BC и AD. Точки M и N являются серединами сторон AB и CD соответственно. Окружность, проходящая через точки B и С, пересекает отрезки BM и CN в точках P и Q (отличных от концов отрезков).

а) Докажите, что точки M, N, P и Q лежат на одной окружности.

б) Найдите QN, если отрезки DP и PC перпендикулярны, AB = 21, BC = 4, CD = 20, AD = 17.

Источник: Досрочная волна ЕГЭ по математике 29.03.2019. Вариант 1, Задания 16 (С4) ЕГЭ 2019

Задание 16 № 526016

Дана трапеция ABCD с основаниями AD и BC. Точки M и N — середины сторон AB и CD соответственно. Окружность проходит через точки B и C и пересекает отрезки BM и CN в точках P и Q, отличных от концов отрезка, соответственно.

а) Докажите, что точки M, N, P и Q лежат на одной окружности.

б) Найдите PM, если отрезки AQ и BQ перпендикулярны, AB = 15, BC = 1, CD = 17, AD = 9 .

Источник: Досрочная волна ЕГЭ по математике 29.03.2019. Вариант 4, Задания 16 (С4) ЕГЭ 2019

Задание 16 № 514374

Диагонали AC и BD четырёхугольника ABCD, вписанного в окружность, пересекается в точке P, причём BC = CD.

а) Докажите, что AB:BC=AP:PD.

б) Найдите площадь треугольника COD, где O — центр окружности, вписанной в треугольник ABD, если дополнительно известно, что BD — диаметр описанной около четырёхугольника ABCD окружности, AB = 6, а BC=6 корень из 2 .

Источник: Задания 16 (С4) ЕГЭ 2015
Классификатор планиметрии: Окружности и четырёхугольники

Задание 16 № 513608

Точка O — центр окружности, описанной около остроугольного треугольника ABC, I — центр вписанной в него окружности, H — точка пересечения высот. Известно, что \angle BAC=\angle OBC плюс \angle OCB.

а) Докажите, что точка I лежит на окружности, описанной около треугольника BOC.

б) Найдите угол OIH, если \angle ABC=75 в степени circ.

Источник: ЕГЭ по математике 28.03.2016. Досрочная волна, вариант 101

Задание 16 № 513627

Точка O — центр окружности, описанной около остроугольного треугольника ABC, I — центр вписанной в него окружности, H — точка пересечения высот. Известно, что \angle BAC=\angle OBC плюс \angle OCB.

а) Докажите, что точка I лежит на окружности, описанной около треугольника BOC.

б) Найдите угол OIH, если \angle ABC=55 в степени circ.


Аналоги к заданию № 513430: 513627 513449 514189 Все

Источник: Задания 16 (С4) ЕГЭ 2016, ЕГЭ по математике 28.03.2016. Досрочная волна, вариант 2 (только часть С)
Решение · Прототип задания · · Курс 80 баллов · Курс Д. Д. Гущина ·

Задание 16 № 509204

Дана равнобедренная трапеция ABCD с основаниями AD и BC. Окружность с центром O, построенная на боковой стороне AB как на диаметре, касается боковой стороны CD и второй раз пересекает большее основание AD в точке H, точка Q — середина CD.

а) Докажите, что четырёхугольник DQOH — параллелограмм.

б) Найдите AD, если ∠BAD = 75° и BC = 1.


Аналоги к заданию № 512338: 512380 509204 510074 519904 Все

Источник: ЕГЭ по математике — 2015. Досрочная волна, Запад.
Классификатор планиметрии: Окружности и четырёхугольники

Задание 16 № 512338

Дана равнобедренная трапеция KLMN с основаниями KN и LM. Окружность с центром O, построенная на боковой стороне KL как на диаметре, касается боковой стороны MN и второй раз пересекает большее основание KN в точке H, точка Q — середина MN.

а) Докажите, что четырёхугольник NQOH — параллелограмм.

б) Найдите KN, если ∠LKN = 75° и LM = 1.


Аналоги к заданию № 512338: 512380 509204 510074 519904 Все

Классификатор планиметрии: Окружности и четырёхугольники
Решение · · Курс 80 баллов · Курс Д. Д. Гущина ·

Задание 16 № 512380

Дана равнобедренная трапеция KLMN с основаниями KN и LM. Окружность с центром O, построенная на боковой стороне KL как на диаметре, касается боковой стороны MN и второй раз пересекает большее основание KN в точке H, точка Q — середина MN.

а) Докажите, что четырёхугольник NQOH — параллелограмм.

б) Найдите KN, если ∠LKN = 75° и LM = 2.


Аналоги к заданию № 512338: 512380 509204 510074 519904 Все

Классификатор планиметрии: Окружности и четырёхугольники

Задания Д11 C4 № 507662

Дан параллелограмм ABCD, AB = 3, BC = 7, ∠A = 60°. Окружность с центром в точке O касается биссектрисы угла D и двух сторон параллелограмма, исходящих из вершины одного его острого угла. Найдите площадь четырёхугольника ABOD.


Аналоги к заданию № 507617: 507662 507812 Все

Решение · Прототип задания · · Курс 80 баллов ·

Задание 16 № 520661

Четырёхугольник ABCD вписан в окружность. Диаметр CC1 перпендикулярен стороне AD и пересекает её в точке M, а диаметр DD1 перпендикулярен стороне AB и пересекает её в точке N.

а) Пусть AA1 также диаметр окружности. Докажите, что \angle DNM=\angle BA_1D_1.

б) Найдите углы четырехугольника ABCD, если CDB вдвое меньше угла ADB.


Аналоги к заданию № 520661: 520702 Все


Задания Д11 C4 № 507617

Дан параллелограмм ABCD, AB = 3, BC = 5, ∠A = 60°. Окружность с центром в точке O касается биссектрисы угла D и двух сторон параллелограмма, исходящих из вершины одного его острого угла. Найдите площадь четырёхугольника ABOD.


Аналоги к заданию № 507617: 507662 507812 Все

Решение · · Курс 80 баллов ·

Задание 16 № 520702

Четырёхугольник ABCD вписан в окружность. Диаметр CC1 перпендикулярен стороне AD и пересекает её в точке M, а диаметр DD1 перпендикулярен стороне AB и пересекает её в точке N.

а) Пусть AA1 также диаметр окружности. Докажите, что \angle DNM=\angle A_1D_1D.

б) Найдите углы четырехугольника ABCD, если \angle CDB:\angle ADB=3:8.


Аналоги к заданию № 520661: 520702 Все

Классификатор планиметрии: Окружности и четырёхугольники

Задания Д11 C4 № 507370

Дан параллелограмм ABCD, AB = 2, BC = 3, ∠A = 60°. Окружность с центром в точке O касается биссектрисы угла D и двух сторон параллелограмма, исходящих из вершины одного его острого угла. Найдите площадь четырёхугольника ABOD.

Решение · · Курс 80 баллов ·

Задание 16 № 516383

Точки P, Q, W делят стороны выпуклого четырехугольника ABCD в отношении AP : PB = CQ : QB = CW : WD = 1 : 4, радиус окружности, описанной около треугольника PQW, равен 10, PQ = 16, QW = 12, угол PWQ — острый.

а) Докажите, что треугольник PQW — прямоугольный.

б) Найдите площадь четырёхугольника ABCD.


Аналоги к заданию № 516403: 516383 Все

Классификатор планиметрии: Окружности и четырёхугольники

Задание 16 № 516403

Точки P, Q, W делят стороны выпуклого четырехугольника ABCD в отношении AP : PB = CQ : QB = CW : WD = 3 : 4, радиус окружности, описанной около треугольника PQW, равен 10, PQ = 16, QW = 12, угол PWQ — острый.

а) Докажите, что треугольник PQW — прямоугольный.

б) Найдите площадь четырёхугольника ABCD.


Аналоги к заданию № 516403: 516383 Все

Методы геометрии: Теорема синусов
Классификатор планиметрии: Окружности и четырёхугольники, Подобие
Решение · · Курс 80 баллов · Курс Д. Д. Гущина ·
Всего: 97    1–20 | 21–40 | 41–60 | 61–80