Всего: 645 1–20 | 21–40 | 41–60 | 61–80 …
Добавить в вариант
Точка O — центр правильного шестиугольника ABCDEF со стороной 7. Найдите радиус окружности, касающейся окружностей, описанных около треугольников BOD, DOF и BOF.
В треугольнике АВС АС = 12, ВС = 5, АВ = 13. Вокруг этого треугольника описана окружность S. Точка D является серединой стороны АС. Построена окружность S1, касающаяся окружности S и отрезка АС в точке D. Найдите радиус окружности S1.
Две окружности, радиусы которых равны 9 и 4, касаются внешним образом. Найдите радиус третьей окружности, которая касается двух данных окружностей и их общей внешней касательной.
Точка О — центр правильного шестиугольника ABCDEF, в котором AC = 10,5. Найдите радиус окружности, касающейся окружностей, описанных около треугольников AOB, COD и EOF.
Две окружности касаются внутренним образом в точке A, причём меньшая проходит через центр большей. Хорда BC большей окружности касается меньшей в точке P. Хорды AB и AC пересекают меньшую окружность в точках K и M соответственно.
а) Докажите, что прямые KM и BC параллельны.
б) пусть L — точка пересечения отрезков KM и AP. Найдите AL, если радиус большей окружности равен 10, а BC = 16.
Точка — центр правильного шестиугольника
со стороной
Найдите радиус окружности, касающейся окружностей, описанных около треугольников
и
В ромб вписана окружность Θ. Окружности w1 и w2 (разного радиуса) расположены так, что каждая касается окружности Θ и двух соседних сторон ромба.
а) Докажите, что площадь круга, ограниченного окружностью Θ, составляет менее 80% площади ромба.
б) Найдите отношение радиусов окружностей w1 и w2, если известно, что диагонали ромба относятся, как 1 : 2.
Окружность S проходит через вершину C прямого угла и пресекает его стороны в точках, удаленных от вершины C на расстояния 6 и 8. Найдите радиус окружности, вписанной в данный угол и касающийся окружности S.
Найдите все положительные значения при каждом из которых система
имеет единственное решение.
Найдите все положительные значения а, при каждом из которых система имеет единственное решение.
Дан треугольник со сторонами 26, 26 и 20. Внутри него расположены две равные касающиеся окружности, каждая из которых касается двух сторон треугольника. Найдите радиусы окружностей.
Дан треугольник со сторонами 115, 115 и 184. Внутри него расположены две равные касающиеся окружности, каждая из которых касается двух сторон треугольника. Найдите радиусы окружностей.
Окружность радиуса вписана в прямой угол. Вторая окружность также вписана в этот угол и пересекается с первой в точках M и N. Известно, что расстояние между центрами окружностей равно 8. Найдите MN.
Через вершины A и B треугольника ABC проведена окружность, касающаяся прямой BC, а через вершины B и C — другая окружность, касающаяся прямой AB. Продолжение общей хорды BD этих окружностей пересекает отрезок AC в точке E, а продолжение хорды AD одной окружности пересекает другую окружность в точке F.
а) Доказать, что площади треугольников ABC и ABF равны.
б) Найти отношение AE : EC, если AB = 5 и BC = 9.
Найдите все положительные значения а, при каждом из которых система
Две окружности касаются внутренним образом. Третья окружность касается первых двух и их линии центров.
а) Докажите, что периметр треугольника с вершинами в центрах трёх окружностей равен диаметру наибольшей из этих окружностей.
б) Найдите радиус третьей окружности, если известно, что радиусы первых двух равны 6 и 2.
Две окружности касаются внутренним образом. Третья окружность касается первых двух и их линии центров.
а) Докажите, что периметр треугольника с вершинами в центрах трёх окружностей равен диаметру наибольшей из этих окружностей.
б) Найдите радиус третьей окружности, если известно, что радиусы первых двух равны 4 и 1.
В выпуклом четырехугольнике ABCD заключены две окружности одинакового радиуса r, касающиеся друг друга внешним образом. Центр первой окружности находится на отрезке, соединяющем вершину A с серединой F стороны CD, а центр второй окружности находится на отрезке, соединяющем вершину C с серединой E стороны AB. Первая окружность касается сторон AB, AD и CD, вторая окружность касается сторон AB, BC и CD.
а) Докажите, что AB || CD;
б) Найдите АС, если r = 2.
Найдите все положительные значения a , при каждом из которых система
имеет единственное решение.
Две окружности касаются внутренним образом. Третья окружность касается первых двух и их линии центров.
а) Докажите, что периметр треугольника с вершинами в центрах трёх окружностей равен диаметру наибольшей их этих окружностей.
б) Найдите радиус третьей окружности, если известно, что радиусы первых двух равны 6 и 2.
В задаче рассматриваются только два случая решения, если окружность, радиус которой нужно найти - самая маленькая или самая большая. Но средняя окружность также удовлетворяет условиям задачи, так что задача имеет три, а не два решения.
Увы, это не так. Такого случая нет. Попытка рассмотреть этот случай приводит к тому же уравнению
что и во втором случае. И это правильно, так как принципиальным является не перебор окружностей на картинке, а порядок точек касания окружностей на их общей касательной.