Поиск
'



Всего: 49    1–20 | 21–40 | 41–49

Добавить в вариант

Задания Д7 C2 № 511231

В основании прямой призмы ABCDA1B1C1D1 лежит ромб ABCD с диагоналями AC = 8 и BD = 6.

а) Докажите, что прямые BD1 и AC перпендикулярны.

б) Найдите расстояние между прямыми BD1 и AC, если известно, что боковое ребро призмы равно 12.

Источник: А. Ларин: Тренировочный вариант № 124.

Задания Д7 C2 № 508951

Ребро куба ABCDA1B1C1D1 равно 4. Точка N — середина СВ, а точка M лежит на ребре AA1, причем AM : MA1 = 3 : 1. Определите расстояние между прямыми MN и BC1.

Источник: А. Ларин: Тренировочный вариант № 110.
Классификатор стереометрии: Деление отрезка, Куб, Расстояние между прямыми

Задания Д7 C2 № 511898

В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 AB = 2, AA1 = 3.

а) Докажите, что прямые AC1 и BE перпендикулярны.

б) Найдите расстояние между прямыми AC1 и BE.

Источник: А. Ларин: Тренировочный вариант № 118.

Задания Д7 C2 № 508191

В правильной треугольной пирамиде SABC с основанием ABC известны ребра AB=8 корень из { 3} и SC = 17. Найдите угол, образованный плоскостью основания и прямой AM, где M — точка пересечения медиан грани SBC.

Источник: А. Ларин: Тренировочный вариант № 105.

Задание 14 № 509202

В кубе ABCDA1B1C1D1 все рёбра равны 4. На его ребре BB1 отмечена точка K так, что KB = 3. Через точки K и C1 построена плоскость α, параллельная прямой BD1.

а) Докажите, что A1P : PB1 = 2 : 1, где P — точка пересечения плоскости α с ребром A1B1.

б) Найдите угол наклона плоскости α к плоскости грани BB1C1C.


Аналоги к заданию № 509202: 514243 Все

Источник: ЕГЭ по математике — 2015. Досрочная волна, Запад. , ЕГЭ по математике 26.03.2015. Досрочная волна, Восток.

Задания Д7 C2 № 505599

Каждое из ребер треугольной пирамиды ABCD имеет длину 1. Точка P на ребре AB, точка Q на ребре BC, точка R на ребре CD взяты так, что AP= дробь, числитель — 1, знаменатель — 2 ;BQ=CR= дробь, числитель — 1, знаменатель — 3 . Плоскость PQR пересекает прямую AD в точке S. Найти величину угла между прямыми SP и SQ.

Источник: А. Ларин: Тренировочный вариант № 42.

Задания Д7 C2 № 505611

В тетраэдре ABCD на ребре AB взята точка K, на ребре AC — точка L, на ребре BD — точка N, на ребре СD — точка M. Точки E и G есть середины ребер AD и BC соответственно. Прямые EG, KM и LN пересекаются в одной точке. Найти площадь четырехугольника KLMN, если AK : KB = 5, AD = 9, BC = 9, а угол между скрещивающимися прямыми AD и BC равен 45°.

Источник: А. Ларин: Тренировочный вариант № 44.
Методы геометрии: Использование векторов
Классификатор стереометрии: Деление отрезка, Площадь сечения, Тетраэдр

Задания Д6 C2 № 527357

В треугольной пирамиде ABCD ребра AB и CD взаимно перпендикулярны, AD=BC, \angle DAC= дробь, числитель — Пи , знаменатель — 2 , \angle ACD= дробь, числитель — Пи , знаменатель — 4 , угол между ребром DC и гранью ABC равен  дробь, числитель — Пи , знаменатель — 6 .

а) Докажите, что середина ребра AB равноудалена от плоскости ACD и плоскости BCD.

б) Найдите угол между ребром AB и гранью ACD.

Источник: А. Ларин: Тренировочный вариант № 254.

Задания Д7 C2 № 511224

Дана правильная шестиугольная призма ABCDEFA1B1C1D1E1F1. Через точки B, D1, F1 проведена плоскость \alpha.

а) Докажите, что плоскость α перпендикулярна плоскости DCC1.

б) Найдите площадь сечения призмы плоскостью α, если известно, что AB = 1, AA1 = 3.

Источник: А. Ларин: Тренировочный вариант № 123.

Задания Д7 C2 № 511259

В правильной четырехугольной пирамиде PABCD все ребра равны между собой. На ребре PC отмечена точка K.

а) Докажите, что сечение пирамиды плоскостью ABK является трапецией.

б) Найдите угол, который образует плоскость ABK с плоскостью основания пирамиды, если известно, что PK : KC = 3 : 1.

Источник: А. Ларин: Тренировочный вариант № 128.

Задания Д7 C2 № 512431

Все ребра правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1 равны  корень из { 133}.

а) Построить сечение призмы плоскостью AFC1.

б) Найдите площадь этого сечения.

Источник: А. Ларин: Тренировочный вариант № 133.

Задания Д7 C2 № 505845

Дана правильная треугольная призма ABCA_1B_1C_1 , стороны основания которой равны a. Найдите угол между прямыми A_1B и AC_1 , если сумма длин всех сторон обоих оснований равна AA_1.

Источник: А. Ларин: Тренировочный вариант № 2.

Задания Д7 C2 № 511245

В прямоугольном параллелепипеде ABCDA1B1C1D1 AB = 8, BC = 6, AA1 = 12. Точка K — середина ребра AD, точка M лежит на ребре DD1 так, что DM : D1M = 1 : 2.

а) Докажите, что прямая BD1 параллельна плоскости CKM.

б) Найдите площадь сечения параллелепипеда плоскостью CKM.

Источник: А. Ларин: Тренировочный вариант № 126.

Задания Д7 C2 № 511862

В правильной треугольной призме ABCA1B1C1 сторона основания равна 6, а боковое ребро равно 5. На ребре CC1 взята точка K так, что CK : KC1 = 1 : 4, а на ребре A1C1 взята точка M так, что A1M : MC1 = 1 : 2.

А) Определите, в каком отношении плоскость BKM делит ребро A1B1 призмы.

Б) Найдите площадь сечения призмы плоскостью BKM.

Источник: А. Ларин: Тренировочный вариант № 114.

Задания Д7 C2 № 512438

Все ребра куба равны  корень из { 134}.

а) Постройте сечение куба, проходящее через середины ребер AB, BC, CC1.

б) Найдите площадь этого сечения.

Источник: А. Ларин: Тренировочный вариант № 134.

Задания Д7 C2 № 514873

В прямоугольном параллелепипеде ABCDA1B1C1D1 AB = AA1 = 6, BC = 4. Точка P — середина ребра AB, точка M лежит на ребре DD1 так, что DM : D1D = 2 : 3. 

а) Докажите, что прямая ВD1 параллельна плоскости MPC.  

б) Найдите площадь сечения параллелепипеда плоскостью MPC.

Источник: А. Ларин: Тренировочный вариант № 162.

Задание 14 № 520803

В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки А и В, а на окружности другого основания — точки В1 и С1, причем ВВ1 — образующая цилиндра, а отрезок АС1 пересекает ось цилиндра.

а) Докажите, что угол АВС1 прямой.

б) Найдите угол между прямыми ВВ1 и АС1, если АВ = 6, ВВ1 = 15, В1С1 = 8.


Аналоги к заданию № 520803: 520853 520879 520915 Все

Источник: ЕГЭ — 2018. Основная волна 01.06.2018. Вариант 301 (C часть)., Задания 14 (С2) ЕГЭ 2018

Задания Д7 C2 № 521479

В прямоугольном параллелепипеде ABCDA1B1C1D1 АВ = ВС = 4, СС1 = 8. Точка К — середина ребра АВ, точка М — середина ребра ВС. Точка Р лежит на ребре DD1 так, что DP : PD1 = 3 : 5.

а) Докажите, что плоскость КМР перпендикулярна прямой 1.

б) Найдите объем пирамиды, основанием которой является сечение параллелепипеда плоскостью КМР, а вершиной — точка D.

Источник: А. Ларин: Тренировочный вариант № 214.

Задание 14 № 501125

В правильной шестиугольной призме ABCDEFA'B'C'D'E'F' все ребра равны 1.

а) Докажите, что AC' перпендикулярна прямой BE.

б) Найдите угол между прямой AC' и плоскостью ACD'.

Решение · · Курс 80 баллов · Курс Д. Д. Гущина ·

Задания Д7 C2 № 505871

Сфера с центром в точке O вписана в прямоугольный параллелепипед ABCDA_1B_1C_1D_1. Найдите угол между прямыми B_1O и BK, где K — середина DC.

Раздел: Стереометрия
Источник: А. Ларин: Тренировочный вариант № 5.
Всего: 49    1–20 | 21–40 | 41–49