Тип 13 № 691973 

Классификатор алгебры: Тригонометрические уравнения, решаемые разложением на множители
Методы алгебры: Формулы двойного угла, Разложение на множители
Уравнения. Тригонометрические уравнения, разложение на множители
i
а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку [0; π].
Решение. а) Преобразуем уравнение:
б) Отберем корни при помощи двойных неравенств. Для первой серии корней:
Найденным значениям параметра соответствуют Для второй серии корней:
Найденным значениям параметра соответствуют
и
Ответ:
Критерии проверки:
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Обоснованно получены верные ответы в обоих пунктах | 2 |
| Обоснованно получен верный ответ в пункте а), ИЛИ получены неверные ответы из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения пункта а) и пункта б) | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
| Максимальный балл | 2 |
Ответ: а) 
б) 0, 

691973
Классификатор алгебры: Тригонометрические уравнения, решаемые разложением на множители
Методы алгебры: Формулы двойного угла, Разложение на множители
PDF-версии: