i
В параллелограмме ABCD расположены две равные непересекающиеся окружности. Первая касается сторон AD, AB и BC, вторая — сторон AD, CD и BC.
а) Докажите, что общая внутренняя касательная l окружностей проходит через точку пересечения диагоналей параллелограмма ABCD.
б) Пусть ABCD — прямоугольник, а прямая l касается окружностей в точках M и N. Найдите площадь четырёхугольника с вершинами в точках M, N и в центрах окружностей, если AD = 16, а расстояние между центрами окружностей равно 10.
PDF-версии: 