Тип 13 № 520906 

Источник: Задания 13 (С1) ЕГЭ 2018
Классификатор алгебры: Основные тригонометрические тождества, Тригонометрические уравнения, Тригонометрические уравнения, решаемые разложением на множители, Тригонометрические формулы суммы или разности аргументов
Методы алгебры: Формулы двойного угла
Уравнения. Тригонометрические уравнения, сводимые к квадратным
i
а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие отрезку
Решение. а) Так как а
то исходное уравнение примет вид
Решим его
б) Отберём корни с помощью тригонометрической окружности на отрезке Получим числа
Ответ: а) б)
Критерии проверки:
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Обоснованно получены верные ответы в обоих пунктах. | 2 |
| Обоснованно получен верный ответ в пункте а), ИЛИ получены неверные ответы из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения пункта а) и пункта б). | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
| Максимальный балл | 2 |
Ответ: а)
б) 
520906
а)
б) 
Источник: Задания 13 (С1) ЕГЭ 2018
Классификатор алгебры: Основные тригонометрические тождества, Тригонометрические уравнения, Тригонометрические уравнения, решаемые разложением на множители, Тригонометрические формулы суммы или разности аргументов
Методы алгебры: Формулы двойного угла
PDF-версии: