На доске было написано 30 натуральных чисел (не обязательно различных), каждое из которых не превосходит 40. Вместо каждого из чисел на доске написали число, в два раза меньше первоначального. Числа, которые после этого оказались меньше 1, с доски стерли.
а) Пусть среднее арифметическое первоначально написанных чисел равнялось 7. Могло ли оказаться так, что среднее арифметическое чисел, оставшихся на доске, больше 14?
б) Среднее арифметическое первоначально написанных чисел равнялось 27. Могло ли среднее арифметическое оставшихся на доске чисел оказаться больше 12, но меньше 13?
в) Пусть среднее арифметическое первоначально написанных чисел равнялось 7. Найдите наибольшее возможное значение среднего арифметического чисел, которые остались на доске.
PDF-версии: 