
Все рёбра правильной четырёхугольной пирамиды SABCD с вершиной S равны 12. Основание высоты SO этой пирамиды является серединой отрезка SS1, M — середина ребра AS, точка L лежит на ребре BC так, что BL : LC = 1 : 2.
а) Докажите, что сечение пирамиды SABCD плоскостью S1LM — равнобокая трапеция.
б) Вычислите длину средней линии этой трапеции.
Решение. Прямая S1M пересекает медиану AO треугольника ABD в точке T так, что АТ : TO = 2 : 1, поскольку T — точка пересечения медиан треугольника SAS1 и O — точка пересечения диагоналей основания ABCD, так как пирамида SABCD правильная.
Следовательно, AT : TC = 1 : 2. Точка L делит отрезок BC в отношении BL : LC = 1 : 2, следовательно, треугольники ACB и TCL подобны с коэффициентом подобия k = AC : TC = BC : CL = 3 : 2, так как они имеют общий угол с вершиной C и стороны AC и BC в треугольнике ABC пропорциональны сторонам TC и LC треугольника TCL, заключающим тот же угол. Значит, сторона сечения, проходящая через точки L и T, параллельна стороне AB основания пирамиды SABCD. Пусть эта сторона сечения пересекает сторону AD в точке P.
Сторона сечения, проходящая через точку M в плоскости SAB, параллельна прямой AB, так как плоскость S1LM пересекает плоскость SAB и проходит через прямую PL, параллельную плоскости SAB. Пусть эта сторона сечения пересекает сторону SB в точке K. Тогда сечение PMKL — равнобокая трапеция, поскольку AP = BL и AM = BK.
Большее основание LP трапеции равно 12, поскольку ABCD — квадрат. Второе основание MK трапеции равно 6, поскольку MK — средняя линия треугольника SAB. Значит, средняя линия трапеции равна
Ответ: б) 9.
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б) | 3 |
| Получен обоснованный ответ в пункте б) ИЛИ имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки | 2 |
| Имеется верное доказательство утверждения пункта а) ИЛИ при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки, ИЛИ обоснованно получен верный ответ в пункте б) с использованием утверждения пункта а), при этом пункт а) не выполнен | 1 |
| Решение не соответствует ни одному из критериев, приведённых выше | 0 |
| Максимальный балл | 3 |
PDF-версии: