Тип 16 № 511227 
Финансовая математика. Задачи на оптимальный выбор
i
В распоряжении начальника имеется бригада рабочих в составе 24 человек. Их нужно распределить на день на два объекта. Если на первом объекте работает t человек, то их суточная зарплата составляет 4t2 у. е. Если на втором объекте работает t человек, то их суточная зарплата составляет t2 у. е. Как нужно распределить на эти объекты бригаду рабочих, чтобы выплаты на их суточную зарплату оказались наименьшими? Сколько у. е. в этом случае придется заплатить рабочим?
Решение. Пусть на первый объект будет направлено х рабочих, суточная зарплата которых составит
Тогда на второй объект будет направлено
рабочих — суточная заработная плата составит
В день начальник будет должен платить рабочим
у. е.
Рассмотрим функцию
при
Это квадратичная функция, старший коэффициент положителен, следовательно, она имеет наименьшее значение при x0 = 4,8. Заметим, что точка минимума не является натуральным числом, поэтому исследуемая функция достигает наименьшего значения в точке 4 или в точке 5. Найдем и сравним эти значения:




Таким образом, на множестве натуральных значений аргумента наименьшее значение функции достигается в точке 5. Поэтому необходимо направить 5 рабочих на первый объект, 19 рабочих — на второй объект. Зарплата рабочих составит 461 у. е.
Ответ: 5 рабочих на 1-й объект, 19 рабочих на 2-й объект; 461 у. е.
Критерии проверки:| Критерии оценивания выполнения задания | Баллы |
|---|
| Обоснованно получен верный ответ | 2 |
| Верно построена математическая модель | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
| Максимальный балл | 2 |
Ответ: 5 рабочих на 1-й объект, 19 рабочих на 2-й объект; 461 у. е.
511227
5 рабочих на 1-й объект, 19 рабочих на 2-й объект; 461 у. е.